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Voltage Collapse Precipitated by the Immediate 
Change in Stability When Generator Reactive 

Power Limits are Encountered 

Ian Dobson and Liming Lu 

Abstruct-When a generator of a heavily loaded electric power system 
reaches a reactive power limit, the system can become immediately 
unstable and a dynamic voltage collapse leading to blackout may follow. 
We study the statics and dynamics of this mechanism for voltage 
collapse by example and by the generic theory of saddle node and 
transcritical bifurcations. Load power margin calculations can be mis- 
leading if the immediate instability phenomenon is neglected. 

I. INTRODUCTION 

Voltage collapse is an instability of heavily loaded electric 
power systems that leads to declining voltages and blackout. It is 
associated with bifurcation and reactive power limitations of the 
power system. Power systems are expected to become more 
heavily loaded in the next decade as the demand for electric 
power rises while economic and environmental concerns limit 
the construction of new transmission and generation capacity. 
Heavily loaded power systems are closer to their stability limits 
and voltage collapse blackout will occur if suitable monitoring 
and control measures are not taken. It is important to under- 
stand mechanisms of voltage collapse so that voltage collapse 
blackouts may be effectively prevented. Most of the current 
approaches to analyzing voltage collapse are represented in [l] 
and [2]. 

One aspect of voltage collapse is that power systems become 
more vulnerable to voltage collapse when generator reactive 
power limits are encountered [3]-[ll]. The effect of a generator 
reactive power limit is to immediately change the system equa- 
tions. For example, the effect of a generator excitation current 
limit may be simply modeled by replacing the equation describ- 
ing a constant output voltage magnitude by an equation describ- 
ing a constant excitation current. Although the system state is 
unchanged, the immediate change in the system equations causes 
a discontinuous change in the stability margin of the system. The 
case in which the stability margin decreases when the reactive 
power limit is encountered but the system remains stable is 
familiar [3], [6]-[8], [lo]. We study the case in which the system 
becomes immediately unstable when the reactive power limit is 
encountered. This possibility was mentioned by Borremans et al. 
[S] but otherwise appears to have been overlooked. The immedi- 
ate instability of the system can lead to voltage collapse and the 
main purpose of this paper is to study the statics and dynamics 
of this mechanism for voltage collapse. 
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We analyze a power system exanple from [12] and demon- 
strate that at lesser loadings, encountering the reactive power 
limit is expected to decrease, but not destroy stability. At suffi- 
ciently high loadings, encountering the reactive power limit will 
immediately destabilize the system and can precipitate a voltage 
collapse along a trajectory which is one part of the unstable 
manifold of an unstable equilibrium. The movement along this 
trajectory is a new model for the dynamics of voltage collapse. 
Moreover, we can argue using the :heory of saddle node and 
transcritical bifurcations that the immediate instability and sub- 
sequent dynamic voltage collapse are likely to be typical for a 
general, heavily loaded power system. The results have an im- 
portant implication for correctly measuring the proximity to 
voltage collapse using load margins; i [ seems that the load power 
margin to bifurcation can be a misleading indication of system 
stability unless the possibility of immediate voltage collapse is 
taken into account. A more detailed version of these results 
appeared in [13] and [14]. 

II. POWERSYSTEM AND REACTIVIZPOWERLIMITMODEL 

We briefly describe a 3-bus power system example from [12] 
and the modeling of a reactive power limit of a generator [13], 
[14]. Details of the equations and parameters are given in the 
Appendix. The 3-bus power system example shown in Fig. 1 
consists of two generators (one is slack bus) and a dynamic load 
with capacitative support. The parameter values used in this 
paper are identical to those of [12] except that the generator 
damping D has been increased to 0.12. This eliminates the Hopf 
bifurcations and other oscillatory phenomena discovered in [15] 
and [16] at high loadings. A well-designed power system stabi- 
lizer would suppress these oscillations. Note that the value of D 
has no effect on the loading at whish saddle node bifurcation 
occurs. 

The load model of [12] includes a dynamic induction motor 
model with a constant PQ load in parallel. The combined model 
for the motor and the PQ load is specified by load powers 

Pt = P,, + P, + K,,8 + ,U,,(V + ni) (2.1) 

Q, = Q, + Q  + K,,i + &,I/ + Kqu2V2 (2.2) 

where V L S is the load voltage phasor and Q  is a parameter 
that varies with the load reactive power demand. These load 
dynamics can be rearranged and combined with standard swing 
equation dynamics to obtain the system differential equations 
with state vector x = (6,, o, S, V) where S,, w are the genera- 
tor angle and frequency [12]. 

The two main causes of the reactive power output Qs reach- 
ing a limit in a generator are the excitation current limit and the 
stator thermal limit [17], [18]. The two limits have similar overall 
effects on the system, and we only consider the excitation 
current limit. 

Because the generator internal vclltage E is proportional to 
the excitation current, the excitation current limit may be mod- 
eled by E encountering a limit Elim. Before the limit is encoun- 
tered, E < Elim and the generator mrminal voltage E,,, is con- 
trolled so that E,,, = E,!f’P, the terminal voltage imposed by the 
voltage regulator [6]. (The dynamics of the voltage regulator are 
not modeled.) When the limit is encountered E = Eli’” and E, 
varies with Em < EEP. Encountering the limit may be thought 
of as changing from the constraint of constant Em to the 
constraint of constant E. The effect of the limit on the system 
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Fig. 1. Three-bus example power system. 

differential equations is to replace E, by a lengthy expression 
h(x, Elim) involving the system state x and the constant Eli’” 
(see Appendix). 

III. IMMEDIATEVOLTAGE COLLAPSEWHENALIMIT 

ISENCOUNTERED 

We present two cases of the example power system encounter- 
ing excitation current limits. It is convenient to write J for the 
Jacobian of the unlimited system evaluated at the operating 
equilibrium xa and Jlim for the Jacobian of the limited system 
evaluated at x,,. The first case is well known and the bifurcation 
diagrams of the unlimited and limited systems are shown in Fig. 
2(a). The excitation limit is encountered at Q  = Qli”’ = 11.0. 
When the limit is encountered the system changes structure and 
J changes to Jlim. The eigenvalues of Jlim differ from the 
eigenvalues of J but their real parts remain negative (see Table 

~ I, Case (a)). The equilibrium at x0 of the limited system has 
reduced stability but remains stable. The system reactive power 
margin Q* - Q”” is reduced since the reactive power Q* at 
which saddle node bifurcation occurs is reduced. Note that the 
upper portion of each of the bifurcation diagrams is stable and 
the lower portion is unstable; in this case, x,, is on the upper and 
stable portion of both the unlimited and limited system bifurca- 
tion curves. 

In the second case, the limit is encountered at the higher 
system loading Q  = Qlim = 11.4. The system changes so that 
Jlim has an eigenvalue with positive real part (see Table I, Case 
(b)). In this case, x0 is on the upper and stable portion of 
unlimited system bifurcation curve and the lower and unstable 
portion of limited system bifurcation curve (see Fig. 2(b)). The 
operating equilibrium x0 becomes immediately unstable when 
the limit is encountered and the system dynamics will move the 
system state away from x0. References [13] and [14] show 
analytically that this immediate instability is typical for suffi- 
ciently high loadings of this example by approximating the 
system equations. Now we describe the dynamic consequences of 
the instability; see [19] and [20] for background in dynamical 
systems and bifurcations. 

The unstable equilibrium x,, has a one-dimensional unstable 
manifold W” that consists of two trajectories W_” and W,U 
leaving x0 and x0 itself (see the idealized sketch of Fig. 3). W” 
is a smooth curve passing through x0 which is tangent at x,, to 
the eigenvector u of Jlim associated with the positive eigenvalue. 
xa also has a three-dimensional stable manifold W” that divides 
the four-dimensional state space near x0 into two parts. Note, 
for example, that W” has an additional dimension that is not 
shown in Fig. 3. 

The system state is initially at x0 but cannot remain there 
because of the inevitable small perturbations on the state. If the 
state is perturbed from x0 to one side of Ws, it will be attracted 
towards W”, and we can simply approximate the dynamics by 
motion along W!. Similarly, if the state is perturbed from x0 to 
the other side of Ws, it will be attracted towards Wf and we can 

(a) 

Fig. 2: (a) Limit encountered at a lesser loading. (b) Immediate insta- 
bility when limit is encountered. 

J 

Fig. 3. Idealized sketch of limited system dynamics. 

simply approximate the dynamics by motion along WF . In short, 
the dynamical consequences of the immediate instability are 
motion along the trajectory W! or the trajectory Wf. Either 
outcome is possible and there seems no reason to regard W!! or 
WY as more likely. 

We integrated the differential equations of the limited system 
starting near xc, to find the outcome of motion along W!! or 
Wf. (The initial conditions were chosen to be x0 f 0.001~ and 
Gear’s integration method [21] was used since differential equa- 
tions are stiff near a saddle node bifurcation.) The correspond- 
ing time histories of I/ are shown in Fig. 4. The trajectory I@ 
tends to the nearby stable equilibrium xf” and the initial 
portion of the slow, oscillatory convergence of I, to xfim is 
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Fig. 4. Possible dynamics caused byjmmediate instability. 

shown is the upper graph of Fig. 4. (This may not occur in 
practice because the voltage control system could prevent the 
voltage from rising [lo].) The trajectory WF diverges so that V 
decreases and the motion along WT shown in the lower graph of 
Fig. 4 is a voltage collapse. Thus we describe a model of a new 
mechanism for voltage collapse: 

The operating equilibrium x0 becomes immediately unstable when 
a reactive power limit is encountered, and one of the possible 
dynamical consequences is voltage collapse along part of the unsta- 
ble manifold of x0. 

This model of immediate voltage collapse has some similari- 
ties with the center manifold collapse model [12]; the voltage 
collapse dynamics can be modelled by movement along a partic- 
ular trajectory. However, the trajectory is part of an unstable 
manifold instead of the unstable part of a center manifold and 
there is also the possibility of convergence to a nearby stable 
equilibrium along the other part of the unstable manifold. 

IV. IMMEDIATE INSTABILITY ANDVOLTAGECOLLAPSEINA 

GENERALPOWERSYSTEMMODEL 

The particular example presented above shows that a suffi- 
ciently heavily loaded but stable system can become immediately 
unstable when a reactive power limit is encountered. The dy- 
namical consequences of this instability are either collapse along 
the unstable manifold trajectory WY or convergence to a nearby 
stable equilibrium along the unstable manifold trajectory W!. 
Now we argue that this description is expected to apply in the 
general case. Our main assumptions are that applying a reactive 
power limit does not increase the margin of system stability, the 
phenomena occurring are generic and a simplification that only 
one bifurcation occurs. 

Consider a general power system modeled by smooth parame- 
terized differential equations f = f(x, A), where x E R” is the 
system state and A E R”’ are slowly changing system parameters 
such as real and reactive load powers [12]. We suppose the 
system is operated at a stable equilibrium x0 when the parame- 
ters are A,,. When a reactive power limit is encountered the 
system equations immediately change to x = flim(x, A) but the 
position of the equilibrium x0 is unchanged. That is, 0 = 
fh,, A,) = f ‘im(q,, A,,). 

Now suppose that the equations x = f(x, A) are gradually 
changed into the equations x = f lim(x, A). This can be done by 
combining f and f lim into new equations 

i = g(x, 4, k) (4.1) 
with a parameter k so that g(x, A,, 0) = f(x, A,) and g(x, A,, 1) 
= f lim(x, A,). We also require that 

g(xo, A,, k) = 0 for k E [O,l]. (4.2) 
In short, we construct a homotopy joining f and flim that 
preserves the equilibrium at x0. Note that A is fixed at A, as the 

parameter k is varied. k gradually increasing from 0 to 1 has the 
effect of gradually applying the reactive power limit to the 
system. This allows the change in structure between f and f lim 
to be studied using bifurcation theog,. However, we do not seek 
to represent the manner in which the reactive power limit is 
applied in practice by the gradual increase in k. 

Equation (4.1) is a one-parameter system of differential equa- 
tions with the restriction (4.2) of an equilibrium at x0. If we 
assume that this a generic one-parameter system of differential 
equations, then the only bifurcation:; which can occur are the 
transcritical bifurcation and the Hopf bifurcation [19]. (In the set 
of all smooth one parameter differe:rtial equations without re- 
strictions or symmetries, the generic bifurcations are the saddle 
node bifurcation and the Hopf bifurcation. An equilibrium dis- 
appears in a saddle node bifurcation and therefore the restric- 
tion (4.2) precludes saddle node bifurcations [20].) In a generic 
transcritical bifurcation two equilibri:‘. approach each other, coa- 
lesce, and then separate with an exchange of stability. The 
Jacobian has a single, simple zero eigenvalue at the bifurcation. 
If one of the equilibria is stable before the bifurcation, then the 
other is type one unstable. After the bifurcation the equilibria 
are also stable and type one unstable but each equilibrium has 
changed its stability. Fig. 5 shows a typical bifurcation diagram 
for the transcritical bifurcation in which the solid line indicates 
stable equilibria and the dashed line denote unstable equilibria. 
In the generic Hopf bifurcation, the equilibrium changes stabil- 
ity by interacting with a limit cycle and the Jacobian has a single, 
simple pair of imaginary eigenvalues at the bifurcation. Of 
course it is also generic for there to be no bifurcation for 
k E [0, 11. 

We first consider the special case of encountering a reactive 
power limit at the point of voltage collapse; that is, A, is chosen 
so that f = f(x, A) with parameter A has a generic saddle node 
bifurcation at (x,, A,). Then x0 is a degenerate equilibrium 
formed by the coalescence of a stable equilibrium and a type 
one unstable equilibrium and the Jacobian of f evaluated at 
(x,,A,) is singular [12], [20]. Since the Jacobian of f evaluated at 
(x,, A,) and the Jacobian of g evaluated at (xc, A,,O) are 
identical, the Jacobian of g evaluated at (xc,, A,, 0) is also 
singular. Therefore, (x,, A,,O) is also a bifurcation point of 
system (4.1) with k as parameter. I? we consider only generic 
phenomena, than the bifurcation of (4.1) at (x,, A,,01 is a 
transcritical bifurcation. The Hopf bifurcation is precluded by 
the single zero eigenvalue and absc.nce of nonzero imaginary 
eigenvalues of the Jacobian at the generic saddle node bifurca- 
tion of f = f(x, A) with A as parame#:er. 

In a generically occuring transcriti:al bifurcation the bifurca- 
tion diagram (suitably reduced to t.ile center manifold of the 
suspended system [20]) is as shown in Fig. 5. There are two 
possible “directions” through the biturcation as k is increased 
from zero so that the equilibrium x,, is either stable or unstable 
for small positive k. Since reactive power limits are generally 
observed to limit system performance, it seems likely that par- 
tially applying a reactive power limit (imposing small positive k) 
would destabilize rather than stabiize the system. Thus the 
more usual case to consider should be x0 unstable for small 
positive k. For small positive k there is a type one unstable 
equilibrium xi close to x0 and part of the unstable manifold W_” 
of x0 is a trajectory tending to xi. In this case, if we further 
assume for simplicity that there are no further bifurcations as k 
increases from a small positive value to one, then we can 
conclude that at k = 1, the system J? = g(x, A,, 1) = f lim(x, A,) 
has x,, unstable and type one. Moreover, there is a stable 

. 
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Fig. 5. Transcritical bifurcation diagram when limit is gradually 
applied. 

equilibrium x1 in the vicinity and the part W_” of the unstable 
manifold of x0 is a trajectory tending to xi. 

The assumption of generic@ of the one parameter differen- 
tial equations (4.1) implies that the occurence of the transcritical 
bifurcation is robust to small changes in (4.1). In particular, if we 
consider a sufficiently heavily loaded but still stable system 
f(x, &,) with Xa chosen close to A, so that f(x, A’a) has a stable 
equilibrium xb, then the corresponding homotopy g(x, Ab, k) 
will have a transcritical bifurcation as k increases from zero to 
one and we can extend the conclusions for the case of a reactive 
power limit encountered at the saddle node bifurcation to the 
case of a reactive power limit encountered just before the saddle 
node bifurcation. The only difference is that x0 is stable for 
k = 0 and the transcritical bifurcation will occur at a positive 
value of k. Fig. 5 shows the bifurcation diagram for the change 
in stability of the 3-bus example system in case (b) (the black 
circles are the data we computed). (For these results g(x, A, k) 
was obtained from the system differential equations by replacing 
E,,, with (1 - k)E,!,T? + kh(x, E”“). Note that (4.2) is satisfied 
since h(x,, Eiim) = E,$‘.) 

V. DISCUSSION AND CONCLUSIONS 

The instantaneous change in the system equations when a 
generator reactive power limit is encountered causes the system 
dynamics and structure to instantaneously change, although the 
system state is unchanged. In particular, the Jacobian at the 
operating equilibrium and the closest unstable equilibrium 
change discontinuously. It follows that most of the voltage 
collapse indexes proposed in the literature that are functions 
only of the system before a reactive power limit is encountered 
are discontinuous when the reactive power limit is encountered. 
We emphasize this point because the literature often neglects 
this somewhat unpalatable discontinuity or misleadingly de- 
scribes it as a discontinuity in the derivative of the index. 
Exceptions are indexes such as the total generated reactive 
power index of Begovic and Phadke [7] that are a functions of 
the system operating point only and hence continuous when a 
reactive power limit is encountered. Two other exceptions are 
the energy function index of Overbye and DeMarco [ll] and the 
load power margin index when proper account is taken of the 
reactive power limits as, for example, in Van Cutsem [lo]. 

One important consequence of a generator reactive power 
limit causing an immediate instability is that the load power 
margin can be misinterpreted to give an incorrect measure of 
system stability. A load power margin measures the load in- 
crease that the system can sustain before bifurcation but is only 
valid when the system is operated at a stable equilibrium. If the 
operating equilibrium becomes immediately unstable, the load 
power margin is incorrect because the system is (at least mo- 
mentarily) at an unstable equilibrium. (If the system were oper- 
ated at the nearby stable equilibrium, then the load power 
margin would be a valid measure of system stability. We note 

that the system state might converge to the nearby stable equi- 
librium as a result of the immediate instability but the possibility 
of voltage collapse as a result of the immediate instability is at 
least as likely.) 

In case (a) the example power system retains stability when 
the reactive power limit is encountered and the reactive power 
margin Q* - Qlim does measure the system stability (see Fig. 
2(a)). In the more heavily loaded case (b), the system becomes 
immediately unstable when the reactive power limit is encoun- 
tered and the system may immediately collapse whereas the 
reactive power margin Q* - Qlim can be misinterpreted as a 
positive margin of stability (see Fig. 2(b)). We conclude that the 
stability of the limited system equilibrium should be checked 
when load power margins are computed. 

Borremans et al. [5] recognized that a generator reactive 
power limit could precipitate a voltage collapse in the manner of 
Fig. 2(b), but regarded this possibility as more theoretical than 
the case of Fig. 2(a). We show by an example and general 
arguments that immediate voltage collapse is likely to be typical 
for a sufficiently highly loaded system encountering a generator 
reactive power limit. However, our results have not established 
that immediate voltage collapse occurs over a significant range 
of loadings up ‘to the bifurcation. That is, we have not excluded 
the possibility that the immediate voltagecollapse might only 
exist for a small interval of loadings before bifurcation. (Our 
power system example is not conclusive in this regard because of 
its small size and the lack of validation of the load model.) 
Cafiizares and Alvarado [22] observed the immediate voltage 
collapse in a large power system model very near the bifurcation. 
We conclude that immediate instability when a generator reac- 
tor power limit is encountered is a plausible cause of voltage 
collapse whose relative importance is not yet established. 

We also study the simplest and most likely dynamical conse- 
quences of the immediate instability in a general power system 
using the theory of generic saddle node and transcritical bifurca- 
tions. The dynamical consequences are either convergence to a 
nearby stable equilibrium or a voltage collapse. The voltage 
collapse dynamics may be modeled by movement along a specific 
trajectory which is part of the unstable manifold of the unstable 
equilibrium. This is a new model for voltage collapse dynamics 
with some similarities with the center manifold model of voltage 
collapse [12]. The dynamics of voltage collapse are easy to 
simulate by numerical integration along the unstable manifold 
and were illustrated using the example power system. 

We hope our example and general analysis will encourage 
more study of the interaction of system limits and voltage 
collapse. In particular, we note the usefulness of the transcritical 
bifurcation in understanding how encountering a system limit 
can affect the system behavior. 

VI. APPENDIX: DETAILS OF MODEL AND PARAMETERS 

The example power system can be described by following 
differential equations [ 121: 

& = w (7.1) 
Mh = - Dw + P,,, + E,Y,V sin (6 - S,,, - 0,) 

+ EZY, sin 0, (7.2) 
K,,8 = -Kqu2V2 - K,,V + Q, - Q,, - Q  (7.3) 

TK,&u” = KpwPqu2V2 i- (KpwKqu - K,wK,,)V 

+ K&P, - PO - PI> - K,dQ, - Qo - Q> 

(7.4) 
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TABLE I 

Case Qlim Eigenvalues of J  Eigenvalues of J”‘” 

11.000 - 14.686 -0.110 f 3.721j - 126.001 - 7.602 -0.017 * 3.379j - 142.961 
11.400 - 3.734 -0.040 & 3.04Oj - 94:627 3.977 -0.904 + 3.388j - 106.645 

where the real and reactive powers supplied to the load by the tions (7.9)-(7.11) when E, is set to its constant value and 
network are S,,,, 6, V are equilibrium solutions of (7.1)-(7.4) when Q  = Qlim. 

Pr = -E&YiVsin(6 + 0;) - E,Y,Vsin(G - S, + 0,) 

+ (Yi sin 0; + Y, sin i3,)V2 (75) 

Q, = EbY,‘Vcos(6 + 0;) + E,Y,Vcos(G - S, + 0,) 
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