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Ian Dobson 
II. VOLTAGECOLLAPSEANDGENERICSADDLENODE 

BIFURCATION 

AMract-Saddle node bifurcation is a generic instability of parame- We model the power system as differential equations with a 
terized differential equation models. We describe the bifurcation geome- vector h of slowly varying parameters: 
try and some implications for the study of voltage collapse in electric 
power systems. The initial direction in state space of dynamic voltage i = f(x, X), XER”, XeRm. (1) 
collapse can be calculated from a right eigenvector of a static power 
system model. The normal vector to the bifurcation set in parameter 
space is a simple function of a left eigenvector and is expected to be 

X is a state vector that includes bus voltage magnitudes and angles. 

useful in emergency cbntrol near bifurcation and computing the mini- 
X is typically a vector of real and reactive load powers. The load 

mum distance to bifurcation in parameter space. powers vary with time so that X is a function of time t and (1) may 
be regarded as differential equations parameterized by the single 

I. INTRODUCTION parameter t : 

The purpose of this paper is to make some observations about the 
geometry of generic saddle node bifurcations and explain how the 

i =f(x, A(t)), xER”;tsR. (2) 

observations are useful in modeling and calculations for voltage Voltage collapse is associated with saddle node bifurcation of (1) 
collapse in electric power systems. Voltage collapse is an instability or (2). We now sketch results from [3] based on Sotomayor’s 
of heavily loaded electric power systems that leads to declining generic bifurcation theory [4], which give simple models for voltage 
voltages and blackout. It is associated with bifurcation and reactive collapse before and after the saddle node bifurcation. Dynamical 
power limitations of the power system. Most of the current ap- systems terminology in the sequel is explained in [3] and [8]. We 
proaches to modeling and predicting voltage collapse are repre- assume that (2) is in Sotomayor’s class of generic one-parameter 
sented in [l] and [2]. systems and exploit his results about the structure of saddle node 

Power system generators reaching reactive power liniits and bifurcations in these systems. The genericity implies that the saddle 
discrete contingencies, such as loss of a power line, are thought to node bifurcations are robust (also see [9]) and expected to occur in 
be important in voltage collapse but they are hard to study in general practice. We use the saddle node bifurcation to model voltage 
power system models because they cause changes in the form of the coliapse because the only other bifurcation generic in one-parameter 
equations governing the system. In this paper we consider the families of systems is the Hopf bifurcation, which leads to an 
simpler problem of voltage collapse when generator limitations do oscillatory instability as opposed to the monotonic decrease ob- 
not change and system parameters vary slowly .(rather than dis- served in voltage collapse, 
cretely) to cause saddle node bifurcation and the subsequent voltage Before bifurcation, the system has a stable equilibrium x,, and all 
collapse. (Note that these assumptions may apply after a discrete the eigenvalues of the Jacobian D,f( x0, X) have negative real 
contingency.) A natural afld general power system model under parts. As the parameter h slowly varies, the stable eqtiilibrium x0 
these assumptions is a set of differential equations with slowly varies and the system state x tracks x0 so that x0 is also the system 
varying parameters, and very general conclusions [3] about the operating point. Thus a static (or quasistatic) model 0 = f(x, A) is 
structure of voltage collapse: may be made by exploiting generic used before the bifurcation. The saddle node bifurcation consists of 
bifurcation theory [4]. the stable equilibrium x0 coalescing with a nearby unstable type one 

One of the difficulties in applying bifurcation theory t6 power equilibrium x1 and disappearing, causing the system to lose stabil- 
systems is that the power system equations have multidimensional ity. We write xl; = x(t*) for the critical value of the parameter 
state and parameter vectors so that the bifurcation geometry is vector at bifurcation and x* for the corresponding equilibrium 
multidimensional. A description of this multidimensional geometry formed by x0 and x, coalescing. The Jacobian D,f(x*, &) is 
for the saddle node bifurcation follows readily from known results singular and has a unique simple zero eigenvalue with a correspond- 
in generic bifurcation theory [4]-[7] and has useful consequences ing right eigenvector u* so that D,f(x*, &)u* = 0. At bifurca- 
for modeling voltage collapse and calculating the proximity to tion, x* is unstable and the system dynamics may be approximated 
voltage collapse. One of the more striking consequences is that the by the system state moving along the particular trajectory Wf , 
direction of the initial dynamic collapse may be studied using a which is the unstable part of the center manifold of x*. If Wf 
static model of the power system. Much of the paper describes the points in a direction in state space so that voltage magnitudes 
bifurcation geometry in state space and particularly the engineering decrease as the system state moves along WS, then we identify 
implications of right and left eigenvectors associated with the bifur- voltage collapse with the movement along Wt. This is the center 
cation. Also useful is the geometry in parameter space of the manifold model for the dynamics of voltage collapse [3]. See [3] for 
bifurcation set, which is the set of critical parameters corresponding a detailed explanation and an example. 
to bifurcations. We derive a simple formula depending on a left 

III. RIGHTEIGENVECTOR u* 
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tudes will fall most quickly have the largest components of II*. 
Indeed, the components of u* that are negative and of sufficient 
absolute magnitude can be used to identify a group of buses at which 
the collapse is most severe [lo], [ 111. 

As well as defining the direction of the initial dynamics at 
bifurcation, u* has a useful interpretation in the static model 0 = 
f(x, X). As the bifurcation occurs, the equilibria xc and x1 coa- 
lesce and u* is the asymptotic direction in which x,, and xi 
approach one another. For a proof, study the Liapunov-Schmidt 
reduction [5], [6], [ 121, which completely solves the local geometry 
of 0 = f(x, h) near (x*, &). 

When a saddle node bifurcation is close (X near xc), x, is near 
xc,, and D, f ( x,, , X) has a unique, simple negative eigenvalue p of 
smallest absolute magnitude with a corresponding right eigenvector 
v. p -+ 0 and v -B v* as X + &. Since v is a continuous function of 
X for X near &, u lies approximately along the line joining xc and 
xi when the system is close to bifurcation. Thus given x,,, the best 
estimate for the direction in which to find x, is given by u or - v. 
This is useful because one can choose initial conditions for the 
numerical calculation of x, along the line through x0 in the 
direction v. 

IV. STUDWNG INITIAL VOLTAGECOLLAPSEDYNAMKSW~HA 
STATICMODEL 

Consider the relationship between the static model (3) and the 
dynamic model (4): 

0 = g(x9 A> (3) 

2 =f(x, A) = ++, A>) (4) 
where h(0) = 0. Then solutions of (3) are equilibria of (4), and 
bifurcation of solutions of (3) at (x,, &) implies bifurcation of 
equilibria of (4) at (x,, &). Moreover, they have the same right 
eigenvector u* because D,gv* = 0 implies that D,f v* = 
DhD,g v* = 0. (If the Jacobian Dh is globally invertible and 
h(x) = 0 iff x = 0, then aN saddle-node bifurcations of (4) are 
also saddle-node bifurcations of (3).) 

Thus studying bifurcations of (3) also studies bifurcations of a 
whole class of dynamic models (4) whose steady-state behavior is 
(3). If we assume the center manifold model for collapse at bifurca- 
tion, then v* gives the initial direction of the dynamic collapse. 
Thus we can calculate u* and the initial collapse direction from the 
static model (3) when we are given only the general form, and not 
the particular details, of (4). The rate of the collapse (slow then fast) 
is known qualitatively from [3]. 

Now we show how these ideas apply to a basic power system 
model. Let y be a vector of load bus voltage angles and magnitudes 
and let 6, be a vector of generator voltage angles. Then a static 
model (load flow equations) is 

0 = g,(b, u) 

0 = g,(L-9 Y, A) (5) 

where g, describes real power balance at the generators and g, 
describes real and reactive power balance at the loads. The parame- 
ter vector X represents change in load power demands. 

A dynamic model that extends (5) by including generator swing 
dynamics and load dynamics is 

d, = w 

ci = g,(6,, J’) - Au (6) 

I = h,(g,(& Y, A>, u). 

Here, h, defines any dynamic load model that depends on the real 
and reactive power balance at each load and frequency w (see [3] 
and [13] for examples). Little is known about such load dynamics, 
and a convincing function h, is hard to obtain. (We do not consider 
the models of the more general form jl = h,(g,(S,, y, A), w, y).) 

The Jacobians of (5) and (6) are 

The form of the Jacobians shows that when the static model (5) 
bifurcates at (6,*, y,, &) with L@:” = (Sg, y’), the dynamic model 
(6) bifurcates at (6,*, 0, y*, &) with v* dyn = (Sg , 0, y’). Since vzy” 
defines the initial collapse direction and viy” is immediately obtain- 
able from u?+?, the initial collapse direction may be immediately 
deduced from the static model (5). The useful point is that the initial 
collapse direction does not depend on the details of the load 
dynamics in h, and we can use the simpler static model (5) to study 
the bifurcation of the dynamic model (6) and its initial collapse 
direction. 

V. LEFTEIGENWCTOR W*INSTATESPACE 

At the bifurcation, the Jacobian D, f( x*, &) of (1) has a unique 
simple zero eigenvalue with corresponding left eigenvector W* so 
that w*D,f(x*, &J = 0. (Note that w* is a row vector.) 
D, f (x*, &) has n - 1 eigenvalues with negative real parts and the 
right generalized eigenvectors corresponding to these eigenvalues 
span a hyperplane TWS(x*) through x* in the state space R”. w* 
may be interpreted geometrically as the normal vector to 7’WS( x*). 
(To demonstrate this we need to show that w*v = 0 for each of the 
right generalized eigenvectors v with nonzero eigenvalue. If the 
eigenvalue corresponding to the eigenvector v is 11 # 0, then this 
follows from 0 = w*D,f(x*, &)v = nw*v. If v is a generalized 
eigenvector of order k, use the more elaborate formula 0 = 
w*(D,f(x*, &) - t11)~u = (- l)knk~, v.) It follows that w* is 
the normal vector to the stable manifold W”(x,), which is an 
invariant hypersurface passing through x* whose tangent hyper- 
plane at xb is TWS(x,). 

Near bifurcation, the Jacobian D, f ( x0, X) has a negative eigen- 
value ~1 of smallest absolute magnitude. Section III explained how 
the right eigenvector v corresponding to p approximates the direc- 
tion from x0 to xi. Now we similarly interpret the left eigenvector 
w of D,f ( x0, X) corresponding to p. The part of the stability 
boundary (basin boundary) closest to x0 is W”(x,), the stable 
manifold of xi. W”(x,) is a hypersurface since x, is type one and 
D, f( x,, X) has exactly one positive eigenvalue p,. The normal 
vector to W”(x,) at x,, and to its tangent plane TWS( x,) at x,, is 
the left eigenvector w, corresponding to 1,. As X + &, ~1 and 
p, -+ 0 and w and w, -+ w*. Thus near bifurcation w approximates 
w,. If we approximate W”(x,) near x1 by TWS(x,), then the 
direction of the shortest line segment from x0 to W”(x,) is 
approximated by w,. Hence w approximates the direction of the 
shortest line segment joining x0 to the stability boundary. This 
direction is that of the smallest perturbation in the state vector x 
from x0 that can destabilize the system. The approximation of this 
direction could be improved by calculating x,, D,f( x,, A), and 
WI. 

VI. THENORMALVECTORTOTHEBIFURCATIONSETIN 
PARAMETERSPACE 

The saddle node bifurcation set C in parameter space R” is the 
set of X that yields a saddle node bifurcation of (1). If xl; E E yields 
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one of the generically occurring saddle nodes, then Lemma 1 below 
shows that Z: is a smooth hypersurface near & and that the normal 
vector to Z at & is w*D, f (x*, &). The calculation of Dhf( x*, &J 
is particularly straightforward for power system models parameter- 
ized by load powers because the load powers X appear linearly so 
that f( X, X) = g(x) + LX, where L is an n x m constant matrix. 
Then D,f = L and the normal vector to X is simply w* L. The 
normal vector to C is useful for monitoring and controlling the 
power system because it defines the most critical direction in 
parameter space for causing or avoiding the bifurcation. Before 
presenting Lemma 1, we outline two applications. 

1) (Emergency load shedding at or near bifurcation.) At bifurca- 
tion w*L defines the normal vector to C and the direction in 
parameter space in which it is most effective to move in order to 
avoid the bifurcation. Thus the loads that it is most effective to shed 
correspond to the larger entries in the vector w*L. Shedding loads 
corresponding to the smaller entries tends to move h in a direction 
more parallel to C rather than away from X. See [14] for an 
example and the generalization to avoiding the bifurcation by vary- 
ing parameters other than load powers. 

2) (Estimation of minimum distance to bifurcation in parameter 
space.) Both the continuation and direct calculation methods of 
finding the bifurcation point (x*, &) require some assumption on 
how the load parameters h will vary with time (e.g., [ll], 
[ 15]-[ 171). These methods work by assuming a particular curve 
x(t) in parameter space and then calculating where the curve 
intersects C and the bifurcation occurs. It is often sensible to assume 
a particular pattern of load increase to define the curve and measure 
the distance to bifurcation along the curve. However, it is also 
useful to estimate the line segment X, & in parameter space with the 
minimum distance to C [18]-1231. This line segment has endpoints 
& (current operating X) and & (nearest point on X to b). The 
direction of &,,)\r is the worst case parameter variation for causing 
bifurcation and 1 X, - X, 1 is the minimum distance to bifurcation. 
The key point is that && is normal to B so that w* L at X, is 
parallel to &&; algorithms that estimate ] & - X, ] will explicitly 
or implicitly use this parallelism [21]-[23]. Initial estimates of X, 
and I X, - X, I for these algorithms can be obtained as follows. We 
calculate the left eigenvector w of DXf(x,,, &,). If the system is 
close to bifurcation, then w approximates w* and WL approximates 
the direction of &,& so that an estimate X;, of & may be calculated 
by increasing X from X, in the direction WL until bifurcation at X;;. 
The approximate minimum distance to bifurcation is then I X;; - 
& I. We also note the possibility of improving this estimate as 
follows. The left eigenvector w& of D,f(x$, X;;) can be computed 
from D,f( x&, &) or obtained as a by-product of the calculation of 
X;; by the methods of [l l] and [16]. A new estimate X;: of X, may be 
calculated by increasing X from X, in the direction w&L until 
bifurcation at x, yielding a new approximate minimum distance 
I X;: - X, I. Further iterations of this procedure yield a method of 
computing X, and I & - h, I as described and exemplified in [22]. 
See [21] and [23] for other algorithms, theory, and examples. 

Lemma 1: Suppose (1) has a saddle node bifurcation at (x*, &) 
with D, f( x*, &) having a unique simple zero eigenvalue with 
corresponding right and left eigenvectors u*, w* and satisfying the 
transversal&y conditions w*D,f(x*, &) # 0 and w,D,,f 
(x*, &)( u*, u*) # 0. Write C for the bifurcation set of (1). Then 
there is an open set U 3 & such that S = C 0 U is a smooth 
hypersurface and the normal vector to S at & is w* D, f (x*, &J. 

Proof: The assumptions imply (see [4, 3.11 or [5, 6.21) that 
there is an open set U 3 & such that S is a smooth hypersurface and 
that the bifurcating equilibria near (x*, xl;) are given by (u(y), &) 

where u is a smooth function u: S -+ R”. For any & ES we have 
f(x&, &) = 0 where x& = u(y). Let dX;, be an arbitrary infinites- 
imal displacement of X;, in S (i.e., any one-form in T*Sx). Then 
D,fdx; + D,fd&. = 0 and w*Dhfd& = -w*D,f&& = 0. 
Since d& is arbitrary, w,D,f is the normal vector to S at &. 0 

Lemma 1 generalizes a result for symmetric Jacobians in [7] and 
can also be deduced from [5, 6.2, theorem 2.11. Note that the 
transversality conditions assumed in Lemma 1 are satisfied by the 
saddle node bifurcations occurring in Sotomayor’s generic class of 
one-parameter systems [4] and hence the saddle node bifurcations 
considered in this paper. Lemma 1 gives a geometric interpretation 
in parameter space of the quantity appearing in the first of the two 
transversality conditions. Kwatny et al. [6] propose determining 
critical collapse parameters by calculating y: U + R so that y - ‘(0) 
= S. (y(h) is the first term of the Taylor expansion of +(a, 1) with 
respect to a where +(a, X) is the Lyapunov-Schmidt reduction of 
f(x, X) = 0.) Kwatny’s method may be related to Lemma 1 by 
noting that w,D,f(x,, h) = D,$(a,, b) = Dhy(xL). 

VII. CONCLUSIONS 

We describe the multidimensional geometry of generically occur- 
ing saddle node bifurcations and some implications for the study of 
voltage collapse in electric power systems. Our observations are 
general and should be useful in studying generic instabilities of 
other systems modeled by parameterized differential equations. 

At the bifurcation a particular right eigenvector a* is both the 
initial direction of the dynamic collapse and the asymptotic direction 
in which the closest unstable equilibrium x, approaches the stable 
operating point xc. If a general form for the load dynamics is 
assumed, then v* is calculable from static power system models and 
these models are sufficient to estimate the initial direction of the 
dynamic collapse. In particular, this direction is independent of the 
details of the load dynamics. Near the bifurcation, particular right 
and left eigenvectors u and w can be calculated from the Jacobian at 
x0. u approximates the direction from xc to x, and w approxi- 
mates the closest direction to the stability boundary. 

In parameter space, w* DAf is the normal vector to the bifurca- 
tion set. w* is a particular left eigenvector of the Jacobian at 
bifurcation and DAf is a constant matrix for typical power system 
models parameterized by load powers. The normal vector to the 
bifurcation set is expected to be useful in emergency control near 
bifurcation and computing the minimum distance to bifurcation in 
parameter space. 
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f, = l/T, T is the period of the periodically switched network), then 
the impulse response approach yields exactly the system’s frequency 
response. 

I. IN~-R~DU~TI~N 

Several methods have been described for the analysis of linear 
circuits containing periodically operated switches [l], [2]. However, 
the approach used in these methods depends heavily on matrix 
manipulations as they require matrix inversion as well as exponenti- 
ation, for every computed frequency point. In [3], an alternate 
approach based upon the computation of the conversion function has 
been described for networks containing ideal switches with zero 
switching instant. However, in the case of networks employing 
lossy switches, as well as in the case of multistage coupling net- 
works separated by switches with different clock rates, no solution 
is known. Quite recently [4], a novel time-domain based approach 
has been described for the analysis and design of multirate digital 
systems. It has been concluded that this approach is far more 
efficient than the standard frequency-domain analysis. In this paper, 
we extend this approach to the analysis and design of linear net- 
works containing periodically operated switches. The main feature 
of this new approach is that it avoids involved matrix operations, 
especially matrix inversion at every frequency point. The only 
limitation of this method is that it yields almost the exact response 
up to half the sampling frequency. 

II. EXACT ANALYSIS OF NETWORKS WITH PERIODICALLY 
OPERATED SWITCHES 

Consider a periodically switched linear network, in which the 
switches change states with a period T s. In [l], an exact analysis is 
given for the case where the period T is divided into only two 
phases. For the general case where T is broken into N phases, a 
similar approach can be followed. That is, during the kth phase and 
assuming that the switching at the slot boundaries is infinitely fast, 
the circuit behavior can be described by the following state equa- 
tions: 

it&t) = A,X,J&) + B@(t), k = 1 -+N 

Y,,k(t) = C,&,(t) + Dku(t), nT+ a,-, < t < nT+ a, 

(1) 

where 

Time-Domain Analysis of Switched Networks 
Containing Periodically Operated Switches 

k 
Uk = c rj 

j=l 

M. F. Fahmy, A. El-Wardaney, and K. M. Shaaban and rj is the width of the jth phase, with the understanding that 

Abstract-A simple approach for the analysis of linear systems con- 
a, = 0 and a,., = T. X,,, k(t), Y,, k(t), and u(t) are the state, 

taining periodically operated switches is described. It is based on com- 
output, and input signal vectors, respectively. A f, B,, C,, and D, 

puting the system’s impulse response. Then, this impulse response series are constant real matrices. The determination of A k, B, , C, , and 
is reduced into a rational function form that makes the evaluation of its D, matrices for a given circuit configuration can be carried out 
frequency spectrum quite easy. Illustrative examples are given and show using the two-graph modified nodal analysis described in [2]. At the 
that, as long as the incoming bandwidth is less than f,/2 (where switching instants t = nT + a,, the state vectors are related by 
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