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AbstrQct-This paper analyzes the stability of a general RLC 
circuit with ideal thyristors or diodes and periodic sources. 
Applications include high power thyristor controlled reactor and 
bridge rectifier circuits. The periodic steady states of the circuit 
are analyzed using a Poincar6 map and transversal&y conditions 
are given to guarantee the smoothness of the Pgincar6 map. A 
simple and exact formula for the Jacobian of the Poincar6 map 
is proved. Account is taken of the varying state space dimension 
as diodes switch on and off. When the transversality conditions 
fail, switching times can jump or bifurcate. Examples show that 
these switching time bifurcations can cause instability of thy&or 
circuits and mode changes of diode circuits. The simplification of 
the Jacobian formula is used to explain why the switching time 
bifurcations occur and are not predicted by the eigenvalues of the 
Jacobian. Periodic orbits of ideal diode circuits are proved to be 
stable using Jacobian and incremental energy methods. A source 
of damping in switching circuits is identified. 

I. INTRODUCTION 

A N ideal diode turns off and becomes an open circuit 
when its current decreases through zero and turns on 

and becomes a short circuit when its voltage increases through 
zero. An ideal thy&or is the same as an ideal diode except 
that its turn on is inhibited unless the thyristor firing pulse 
is on. This idealization is particularly useful and appropriate 
when analyzing the overall system performance of high power 
switching circuits attached to utility power lines. 

Utility applications for thyristor switching circuits include 
rectifying and inverting bridge circuits for high voltage dc 
transmission, thyristor controlled reactors for static var control, 
and the emerging technology of flexible ac transmission [9], 
[ll], [19]. Detailed systems studies of the effect of these 
devices on the power system use network models consisting 
of linear RLC elements, ideal thyristors, and periodic voltage, 
or current sources. The switching devices are controlled by 
varying the thyristor firing times. Even in the case of periodic 
thyristor firing (firing delay fixed with respect to the sources), 
little is’ established about the stability of these models. For 
example, the damping effect associated with the thyristors 
switching off and the instabilities due to switching time 
bifurcations [14]-[ 161 are poorly known. We analyze the 
stability of these systems in the case of periodic thyristor 
firing. It is convenient to first derive results for ideal diode 
circuits and then adapt the results to the ideal thyristor circuits 
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since the ideal diodes have a cleaner theory. Ideal diodes and 
thyristors are also useful idealizations for some system studies 
at lower power levels [211, [221, 1291, 1321. 

We first consider a circuit of linear RLC elements, ideal 
diodes, periodic voltage, and current sources. These nonlinear 
circuits are usually operated in a periodic fashion so that steady 
state operation, corresponds to a periodic orbit in state space. 
We exploit the special structure of these circuits to derive 
a simple formula for the stability of the periodic orbit. The 
formula is used to obtain conditions for the stability of the 
periodic orbit and to analyze the switching time bifurcations 
in which the switching times jump as circuit parameters are 
slowly varied. 

Since the circuit is linear except for the diodes, the circuit 
is linear between diode switchings and may be analyzed as 
a succession of linear circuits. Each linear circuit depends on 
which diodes are conducting; the ideal diode model implies 
that on diodes are a short circuit and off diodes are open 
circuits. The initial state of the circuit affects the time of 
the diode switchings and hence the time at which the linear 
systems change. This dependence of the switching times on the 
state causes the nonlinearity of the circuit and is responsible for 
the difficulty and interest of the analysis. The dimension of the 
state space changes when the diodes switch, and this is taken 
into account by a change of coordinates at each switching. 

Steady-state circuit operation corresponds to a periodic 
orbit in state space, and a natural way to analyze the circuit 
operation is to sample the circuit state every period. The map 
that advances the state by one period is called the Poincart5 
map [8], [31], and periodic orbits of the circuit correspond to 
fixed points of the Poincare map. Moreover, the stability of a 
periodic orbit can be determined (except in borderline cases) 
from the Jacobian of the Poincark map evaluated -at -the fixed 
point [8], [31]. In fact, the eigenvalues of the Poincart? map -tie 
Floquet multipliers of the periodic orbit. See [15] for a detailed 
example of a Poincar.5 map applied to a switching circuit. 

The analysis of diode circuits easily adapts to thyristor 
circuits if the thy&or firing pulses are periodic and the 
thyristors do not misfire so that they turn on periodically. 
Indeed, the analysis is simplified by the periodic thyristor 
turn on time. (The onset of .tbyristor misfire is described as 
a transcritical bifurcation in [26j.) - - - 

The main objective of this paper is to give a comprehensive 
account of stability and bifurcations of a general circuit with 
RLC elements, periodic sources, and ideal thyristors or diodes. 
Sections I and II develop the circuit equations and switching 
conditions, and Sections III-VI derive a simple and exact 
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formula for the Jacobian of the Poincare map. One might 
expect the formula for the Jacobian to be complicated by the 
nonlinear dependence of the switching times on the circuit 
state, but we prove that the formula simplifies. The Jacobian 
formula is illustrated with a diode bridge rectifier circuit in 
Section VI, and a tbyristor circuit example may be found 
in [14], [15]. A brief account of the Jacobian simplification 
appeared in [6]. 

The Jacobian of the Poincare map is basic to studying 
stability of a periodic orbit of the circuit. Section VII constructs 
“nice” coordinates in which the Euclidean norm is related to 
the energy stored in the inductors and capacitors. Section VIII 
uses the nice coordinates and the Jacobian formula to show that 
the Jacobian eigenvalues are always inside the unit circle. If the 
circuit is dissipative, then the Jacobian eigenvalues are strictly 
inside the unit circle, and the corresponding periodic orbits are 
asymptotically stable. However, switching times can change 
discontinuously, and Section IX describes these switching 
time bifurcations as fold bifurcations of diode currents or 
voltages. Examples show that switching time bifurcations 
can cause instability of thyristor circuits and mode changes 
of diode circuits as described in Section X. The switching 
time bifurcations are not predictable from the eigenvahtes of 
the Jacobian of the Poincare map and can occur when the 
eigenvalues are strictly inside the unit circle. Section XI uses 
the Jacobian simplification to explain this novel phenomenon. 
Section XII proves that periodic orbits of diode circuits are 
stable by using incremental energy methods [29]. 

In deriving the Jacobian of the Poincare map, we use a state 
space analysis of switching circuits that overlaps with contri- 
butions of other authors. The fundamental work.of Louis [21] 
computes Poincare maps for switching circuits including con- 
trols. The varying,dimensions of the state vector and switching 
conditions are discussed, and formulas for the propagation 
of first order deviations through switchings are stated. Louis 
computes as an example the Jacobian of the Poincare map of 
an ac/dc convertor with a current regulator. Many of the ideas 
in Sections II-VI of this paper can be found in [21], but the 
development and derivations differ greatly. In particular, our 
development constructs the coordinate changes systematically, 
includes regularity conditions on the switchings, and gives a 
detailed proof-of the Jacobian simplification. However, our 
paper does not take account of controls as [21] does. 

Other authors have also used a state space approach to 
compute Jacobians for switching circuits. Verghese et al. [32] 
give a general approach to computing Poincare maps and their 
Jacobians for switching circuits. Circuit controls and symme- 
tries and the automation of the computations are discussed, 
but; the ;Jacobian simplification and the varying dimension 
of the state vector are not treatedThe linearized dynamics 
of a series resonant- convertor are computed and studied. 
Grotzbach and Lutz [7] compute Jacobians of Poincare maps 
of switched circuits including control actions. They develop 
Newton algorithms for computing steady state solutions and 
compute eigenvalues for ac/dc convertors with controls. The 
extension to nonlinear circuits and the derivation of averaged 
circuit models are discussed. Bedrosian and Vlach [2] extend 
the approach in [l] to give formulas for the Jacobian of 

a general switching circuit and compute the steady state 
of convertor circuits using Newton’s method. The Jacobian 
formula applicable to ideal diode switchings in [2] is from 
[20] and can only be generally valid when the minimum state 
space dimension encountered as the circuit evolves is one or 
zero because the vector outer product in the Jacobian formula 
implies that the Jacobian has maximum rank one. 

Chua et al. [3] prove an analogous Jacobian simplification 
for a nonlinear resonant circuit with a sinusoidal voltage 
source, piecewise linear inductor, and a linear capacitor and 
resistors. They analyze this circuit as a succession of linear 
circuits of the same dimension, which vary continuously across 
the switchings and derive a simplified formula for the Poincare. 
map Jacobian. The formula is used to compute the stability of 
periodic orbits, and subharmonic and chaotic circuit solutions 
are investigated. Shaw and Holmes [30] compute a simple 
Jacobian for a mechanical piecewise linear oscillator. Parker 
and Chua [25] and Hasler [lo] prove that the simplified 
Jacobian is correct for a general piecewise linear circuit. The 
ideal diode or thyristor model differs from the piecewise linear 
assumption because the ideal diodes or thyristors cause the 
state space dimension to change at each switching. Moreover, 
the inhibition of thyristor turn on when the firing pulse is off 
has no counterpart in a piecewise linear model. Inaba and Mori 
[ 121, [ 131 study circuits related to the forced Van der Pol and 
Rayleigh oscillators, which contain a diode and a negative 
conductance by letting a piecewise linear diode model tend 
to an ideal diode model with a forward voltage drop. A one 
dimensional Poincare map and its Jacobian are analytically 
derived and used to study toroidal and chaotic solutions. 

Many special purpose computer codes to simulate rectifiers 
and other switching circuits have been written, and these can 
be used to study transients and stability on a case by case 
basis. The computer codes that most closely reflect the analytic 
approach of this paper are those which numerically integrate 
the circuit equations until a diode switching is detected, 
reformulate the circuit equations with the off diode branches 
removed and the on diode branches inserted and then continue 
integrating the reformulated circuit equations until the next 
switching [l], [4], [23], [24]. 

Jalali et al. [14], [15] present simulation and experimental 
evidence for switching time bifurcations in a basic thyristor 
controlled reactor circuit for static VAR control. This paper 
complements and generalizes [ 151 by presenting a rigorous 
account of the theory of switching time bifurcations in diode 
and periodically fired thyristor circuits. We suggest reading 
[15] before this paper. 

II. SYS-~M EQUATIONS WITH A DIODE ON OR OFF 

We construct general system equations for a circuit with a 
particular diode on or off. The state space changes when the 
diode switches, and we consider the coordinate change relating 
the state space when the diode is on to the state space when 
the diode is off. 

When the diode is on, the circuit dynamics are described 
by the linear system 

E=Az+Bu (2.1) 
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where xc(t) E R” is the system state vector and u(t) E R” is 
a vector of smooth functions of time representing the sources. 
(Throughout the paper, “smooth” may be read as “C”” or 
“CT?-.“) A and B are constant matrices, and 2 and u are 
written as column vectors. The state vector is assumed to 
be continuous across the switchings. This holds, for example, 
when the states are inductor currents and capacitor voltages. 

We assume throughout the paper 
Assumption 2.1: Each diode has a cutset K. consisting only 

of inductors (at least one) and current sources. 
For example, Assumption 2.1 holds when the diode has 

an inductance in series and does not hold if the diode has a 
capacitor connected across its terminals in parallel. Another 
assumption that could be made in place of Assumption 2.1 
would require each diode to have a loop consisting only of 
capacitors (at least one) and voltage sources. Results similar 
to those of this paper could be obtained for diode circuits 
with this alternative assumption, but we neglect this possibility 
because Assumption 2.1 is more useful for high power circuits. 

The diode current id is a linear function of the state z and 
the input ‘IL specified by the row vectors c and b so that 

id = cx + bu. (2.2) 

Assumption 2.1 implies that the diode cutset K, contains some 
inductors and hence that c # 0. When the diode is off, its 
current is zero, and c~ = -bu; that is, the circuit state is 
constrained to lie in a hyperplane with normal c. In many 
circuits, b = 0 and the hyperplane passes through the origin 
and is fixed. In general, b # 0, and the hyperplane moves along 
its normal as u varies with time but maintains its orientation 
normal to c. The state of the circuit with the diode off can be 
represented by a vector y in the hyperplane. The hyperplane 
and y are (n - 1) dimensional since one degree of freedom of 
the circuit is lost when the diode switches off. 

Choose the columns of an n x (n - 1) matrix Q  as a 
basis for vectors in the hyperplane. Since the columns of Q  
are independent, Q  must have rank n - 1. Q  is called an 
injection matrix. Then y (hyperplane coordinates) is related to 
2 (original coordinates for R”) by 

x=Qy-Zu 

where the matrix 2 is chosen so that 

(2.3) 

CZ = b. (2.4) 

Also, since c is normal to any vector in the hyperplane, 

cQ = 0. (2.5) 

When the diode is off, it is convenient to replace the off diode 
by a voltage source -Vd. Then 

ci = Ax + Bu - d’vd (2.6) 

for some constant column vector d’. Since it is shown at the 
end of the Section III that cd’ > 0, we can define a scaled 
version of d’ as d = d’/(cd’) so that 

cd= 1. (2.7) 

=d 

Fig. 1. Commutating diode bridge circuit. 

That is, d is a nonzero vector not in the hyperplane. It follows 
that the matrix (Q 1 d) is invertible, and we define the first 
n - 1 rows of the inverse to be the (n - 1) x n matrix P 

(23) 

The last row of the inverse is c because cQ = 0 and cd = 1. 
It follows from 

that 

and 

Also 

-PQ = In-1 

Pd=O. 

(2.9) 

(2.10) 

(Qld) 4 =QP+dc=In. 
0 

Equations (2.9) and (2.10) imply that P has rank n - 1, and 
the kernel of P is (d). P can be geometrically interpreted as 
the projection onto the hyperplane along d. 

We choose the matrix 2 to be 

Z=db . (2.12) 

(recall that d is a column vector and b is a row vector). Then 
CZ = cdb = b so that the previous requirement (2.4) on 2 is 
satisfied. Moreover, (2.10) implies that 

PZ=O. (2.13) 

Equation (2.3) becomes 

x = Qy  - dbu. (2.14) 

Multiplying both sides of (2.14) by P and using (2.10) yields 

y = Pa. (2.15) 

Multiplying the off diode equations (2.6) by P and using (2.15) 
and (2.14) allows the off diode equations to be written in the 
y coordinates as the linear system 

6 = PAQy + PBu - PAdbu. (2.16) 
Consider the circuit of Fig. 1 as an example. When all three 

diodes conduct, the state space is two-dimensional, and the 
state x = (x~,zc~)~ consists of the two currents ~1, x2 shown 
in Fig. 1. The circuit equations are 

2 = Aonx + Bonu 
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Fig. 2. State space geometry. 

The current id in diode 5 is id = 22 - xi = cx where 
c = (-l,l). In this case, 13 = 0. When diode 5 turns off, 
the state is restricted to the hyperplane (in this case a line) 
0 = 22 - xi = cx. c is normal to this hyperplane as shown 

in Fig. 2. Q  = 1 
0 

I is a  basis for vectors in the hyperplane, 

and the hyperplane coordinate y is related to x by x = Qy. 

Write L  = 2L, +  Ld. Then d’ = L,(ZL1-L,) (-“;; Ld) 

specifies how the off diode 5 voltage contributes\ to (2.6) and 

from (2.8). P-can ‘be interpreted as a projection onto the 
hyperplane as indicated by the dotted line parallel to d  in 
Fig. 1. The circuit equations when diode 5 is off are 

6  = Aorry +  PB,,u where Aoff =  PA,,& = -&IL. 
(2.18) 

III. DIODE SWITCHING CONDITIONS 

The switching conditions on the diode current and voltage 
are formulated and related to the coordinate changes specified 
by the’ P and Q matrices. Transversality conditions usually 
satisfied at switchings are stated. 

When the diode is on, the diode current id = cx + bu  and 
the diode switch off condition is 

cx + bu  = 0. (3.1) 
When the diode is off, ck = -bti so that multiplying (2.6) 
by c yields 

z)d = (cd’)-‘[c(Ax + Bu) +  bti] 

and the diode switch on condition 

c(Ax + Bu) +  hi =  0. (3.2) 
Rearranging (2.11) yields the important identity 

I, - QP = dc  (3.3) 
which relates the coordinate changes P and Q to the vector c 
determining the diode switching conditions. 

At a typical switch off of an ideal diode, the diode current 
id encounters zero with a negative gradient. More precisely, 
if the diode current is regarded as a function of time, then its 
time derivative %  satisfies 

at the switching time s,~. Similarly, at a  typical switch on, 
the diode voltage wd encounters zero with a positive gradient 

Now we show that cd’ > 0 by assuming that the transver- 
sality condition (3.4) can be satisfied for at least one switch 
off of the diode. That is., suppose that there is an input u and a 
circuit initial state such that at a  diode turn off at time sO~, the 
diode current id satisfies (3.4). This is a very mild assumption. 
The on system equations (2.1) and (2.2) imply that 

$p#-) = ci(s,fT-) + biL(S,ff) 

= c[Ax(so~) + Bu(m)l + ~~(s,IT). (3.6) 

Since the state is continuous across the switching, and the input 
is smooth, x(s,tf), u(s,,a) and id(s,a) are not ambiguous. 
After the switch off, 0  = id = $$. Then the off system 
equations (2.6) and (2.2) imply that 

0 = %  = ck(t) + hi(t) 

= c[Ax(t) +  Bu(t)] - cd’wd + b&(t). (3.7) 

Evaluate (3.7) at S,R+ and use (3.6) to obtain 

cd’v&,~+) =  $,tf-). (3.8) 

Now (3.8) and (3.4) imply that cd’ > 0. Equation (3.8) states 
that the inductive voltage associated with the slope of the 
decreasing current just before the switching appears just after 
the switching as a negative voltage across the diode. Also, 
differentiating the on system equations and (3.7) once more 
similarly yields 

cd’ti&,fl+) =  $&,s-). (3.9) 

Iv. ANALYSIS OF AN INTERVAL 
CONTAINING A DIODE SWITCH OFF 

Sections IV-VI derive a simple formula for the Jacobian 
of a  periodic orbit. The approach is to divide one period of 
operation into subintervals, each of which contains one diode 
switching. Sections IV and V compute the Jacobian of the 
map, which advances the state from the beginning to the end 
of each subinterval. Then the chain rule is used in Section VI 
to compute the Jacobian of the Poincare map as the product 
of the Jacobians for the subintervals. 

Let [ti , ts] be a time interval including a single diode switch 
off at time s,ff and no other switchings. The switch off is 
assumed to satisfy the transversality condition (3.4). We  write 
$1 for the flow that maps the state at tl to the state at t2 so that 

y(t2) = h(x(h),h, t2). 

This section computes 41 and its Jacobian D$i with respect 
to x(ti). The proof that 41 is smooth and hence differentiable 
is postponed to the end of the section. 
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The diode is on in [tl, s,a] so that integrating (2.1) yields 

X(S&) = eA(soff-tl) eA@l-‘)B+) dr 
1, 

(4.1) 
The transformation to y coordinates at the switch off time s,ff 
is 

Y(%ff) = px(&Jff). (4.2) 

The diode is off in [~,a, ts] so that integrating (2.16) with 
initial condition y(s,~) gives 

Y(tz) = $1(x(h), t1, t2) 

= ePAQ(t2-wf) y(s,E) 

t2 + 
J 

ePAQ(t2-T)P(B - Adb)u(T)dr (4.3) 
%ff 

Substituting for y(s,~), x(s,~) from (4.2), (4.1) yields 

h(x(tl),tl,t2) = e PAQ(tz-s,fr)p,A(sorr-tl) 

( J  %ff 

x x:(h) + eA(t1-‘)Bu(7) dr 
t1 

+ J t2 ePAQ(t2-T)P(B - Adb)u(T) dr. 
Soff 

(4.4) 

Differentiate with respect to x(tl) to obtain 

D&=e PAQ(t2-s,,)peA(s,,-tl) 

+ ePAQ(t2-sofdpA(I - Qp) 

+ dbu(m) Dsofi. 1 
Note that some of the terms associated with s,tf in the limits of 
the two integrals of (4.4) cancel. The row vector Ds,tf is the 
gradient of s,ff with respect to x(tl). Substitute from (3.3), 
(4.1) and use (2.4) to obtain 

D&=e PAQ(t2-s,rf)peA(s,fr-tl) 

+ ePAQ(t2-ss,ff)PAd[cx(s,~) + bu(s,~)] Dsoe. 

(4.6) 

The switching condition (3.1) determining s,a is 0 = 
cx(s,~) + b~(s,~) which implies that the middle portion 
of the second term vanishes, and we obtain the surprising and 
simple result 

Dc#q=e PAQ(tz-s,fr)peA(s,rr-tl). (4.7) 

This simplification can be viewed another way. For fixed 
initial time tl, the right hand side of (4.4) may be regarded as a 
function $1 (x( tl), s,~) depending explicitly on the switching 
time s,~. Inspection of the right hand side of (4.4) shows 
that $1 is a smooth function. In this formulation, the system 
equations are 

Y(tz) = til(X(h>, soff) (4.8.1) 

0 = f(soff > x(b)) (4.8.2) 

where 

f(h x(h)) = cx:(t> + bu(t) 

= ceActetl) (x(tl) + 11 eA(“-‘)Bu(T)dT) 

+ h(t) (4.9) 

is the diode current assuming that the diode does not turn 
off. The zero diode current equation (4.8.2) is regarded as 
a constraint to be solved to determine sOff as a function of 
x(tl). Then it is well known (e.g. [32]) that differentiating 
&(x(h)) = $1(x(h), m) yields 

(4.10) 

where D& is the first term of (4.5) andpDs,R is the 
second term of (4.5). However, the simpli&%ion of (4.6) 
shows that 

%h -=e PAQ(t2-soff)PAd[cx(s,ff) + bu(soR)] = 0. (4.11) 
UT 

That is, the final state y(t2) is independent of the switching 
time to first order. 

It remains to prove that the transversality condition (3.4) at 
the switch off implies that $1 is a smooth function. Since 
the diode current f(t,x(tl)) defined in (4.9) is a smooth 
function, Lemma Al of Appendix A proves that soa is a 
smooth function of the initial state x(tl). Since &(x(tl)) = 
$1 (x(t1> , s,~) and $1 is a smooth function, it follows that 41 
is smooth. 

V. ANALYSIS OF AN INTERVAL 
CONTAINING A DIODE SWITCH ON 

Let [tz, ta] be a time interval including a diode switch on 
at time s,, and no other switchings. We write 42 for the flow 
that maps the state at t2 to the state at t3 so that 

x(t3) = $z(y(tz), t2, t3). (5.1) 

This section computes 42 and its Jacobian D452 with respect 
to y(t2). We assume the transversality condition (3.5) at the 
switch on to ensure that $2 is a smooth function. 

The diode is off in [tz, son] so that integrating (2.16) yields 

Y(Son) = eP~Q(so.-td 

x (yO+~~one PAQ(t2-T)P(B - Adb)u(T)dT 
> 

. 

(5.2) 

The equation transforming to the x coordinates at s,, is 

x(son) = Qy(son> - db4Son). (5.3) 

The diode is on in [s ,,,,, t3] so that integrating (2.1) and using 
(5.3) yields 

4z(y(tz), tz, t3) = eA(t3-son)(Qy(Son) - db4son)) 

J t3 + eA(t3-7)Bu(T) d7. (5.4) 
S”” 
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Substitute from (5.2) and differentiate with respect to y(t2) 
to obtain 

- eA(t3-=od(I _ Qp)AQePA&(“on-t,) 
( 

Y(t2) 

J SO” + ePAQ(t2--7)P(B - Adb)u(T) dr 
> 

Ds,, 

- e’ct3-“on)(I - QP)(B - Adb)u(s,,)Ds,, 

- eA(t3-Son)dbr;(son)Ds,,. (5.5) 

Substitute from (3.3), (5.2), and (2.12) to obtain 

D$2 = eA(t3-=on)QePAQ(=on-tz) _ eA(tr=on)d 

x k(AQ~(son) - Adb~(Son) + Bu(so,)) 
+ b~(Son)]DS,,. (5.6) 

But (2.14) implies that the expression in square brackets is 
[c(Az(s& + Bu(son)) + bti(son)], and this vanishes accord- 
ing to the switching condition (3.2) determining s,, so that 
we obtain the simple result 

D42 = eA(t3-=,,)~ePAQ(=,,--t,). (5.7) 

VI. JACOBIAN OF A PERIODIC ORBIT 

Suppose the circuit is operating in a periodic fashion. 
That is, the circuit waveforms, sources, and the patterns of 
diode switching are periodic with period T. Then the circuit 
operation can be studied with the Poincare map Ft,, which 
maps the circuit state at time tl to the circuit state at time 
tl + T. 

Conditions for the smoothness of the Poincare map, which 
we assume in this section, are given by 

Lemma 6.1: Suppose that each switch off in the period 
satisfies the transversality condition (3.4), and each switch on 
in the period satisfies the transversality condition (3.5). Then 
the Poincare map Ft, is smooth. 

Lemma 6.1 is proved by dividing the period [tl, tl + T] 
into subintervals each containing one switching. According to 
Sections IV and V, the transversality conditions (3.4) and (3.5) 
imply that the maps advancing the state over each subinterval 
are smooth. Then Ftl is smooth since Ftl is the composition 
of the smooth maps over the subintervals. 

A periodic orbit of the system passing through state z at 
time tl corresponds to a fixed point of the Poincare map so 
that F,,(Z) = z and the stability of the periodic orbit may 
be determined (except in borderline cases) from the Jacobian 
DF,, II of the Poincare map evaluated at x. 

Sections IV and V have computed Jacobians of the maps 
advancing time over subintervals of the period that contain one 
switching. According to the chain rule, the Jacobian DF,, Iz 
can be computed by dividing the period into subintervals each 
containing one switching and multiplying the Jacobians of 
these subintervals. The general formula for DF,, II stated at 
the end of the section is made apparent by first computing 
DFt, II for the case of a period containing one diode switch 
on and one diode switch off. 

Suppose that the time tl occurs when the diode is on, and 
we choose tl as the start of the period. Then the Poincare 
map may be expressed as 

f%,(x) = &(h(x,tl,tz),tz,h + T) (6.1) 

where t2 is a time when the diode is on. Note that tl 5 sOa 5 
t2 < s,, 5 tl + T. It is straight forward to check using (4.4) 
and (5.4) that F,, is independent of the choice of t2 in the 
interval [sol, s,,]. The Jacobian is now easily obtained from 
(4.7), (5.7) and the chain rule 

DFt, 11 = D~21(~,(,),t,,t,+T)D~ll(z,tl,tz) 
= eA(tl+T--son) Q~PA&(=o~ --sorr)peA(wr--td. (6.2) 

A slightly simpler form may be obtained by evaluating (6.2) 
at tl = s,ff and writing 0 = T - (s,, - s,~) for the time 
interval when the diode is on 

DFSoff Iz = eAaQePAQ(T-u)P. (6.3) 

Alternatively, choose t2 as the start of the period. Then the 
Poincare map may be expressed as 

Ft,b) = 41(44y,tz,td,tl,tz +T) (6.4) 

and the Jacobian can be similarly derived as 

DF& IY = D~21(~l(y),tl,tz+T)D~11(y,tz,tl) 
=e PAQ(t2+T-s,fr)peA(s,ff-s,,)~ePAQ(s,,-tz). 

(6.5) 

The Jacobian DFtl 13: of (6.2) is an n x n matrix whereas 
the Jacobian DFtzI, of (6.5) is an(n - 1) x (n - 1) matrix. 
DFt, IZ has an additional zero eigenvalue not present in 
DFt, IY because of the rank n - 1 matrices P and Q. 

The switching times s,a and s,, in (6.5) depend on the 
state y and the circuit sources U. Thus, the Jacobian does 
depend on the state and the sources but only implicitly via the 
switching times sOff and s,,. This nicely shows the nature of 
the nonlinearity of the circuit. It is remarkable that the Jacobian 
formula (6.5) is the same simple formula that would be 
obtained by naively regarding the switching times as constants! 

A slightly simpler form may be obtained by evaluating (6.5) 
at t2 = s,, and writing 0 = s,a - s,, for the time interval 
when the diode is on 

DFSo, Iy = ePAQ(T-o)PeA”Q. (6.6) 

The action of (6.6) on a linearized perturbation 6y may be 
informally described as: change to x coordinates with the 
injection Q, let the on system act for time c, project to the off 
coordinates with P, and let the off system act for timeT - g. 

The Jacobian formula for a general periodic orbit is now 
stated. Suppose the periodic orbit has Ic successive switching 
patterns and Poincare map F. Switching state i has matrix Ai 
and lasts for time ci. Then 

DF = eAlal R12eA2”2 Rz3 . . . eAhoh Rkl (6.7) 

where Rij is the coordinate change relating the circuit state 
in switching pattern i to the circuit state in switching pattern 
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Ld 

Fig. 3. Diode bridge circuit. 

j. Rij is a projection matrix (Pij) if a diode switches off 
and, an injection matrix (Q;j) if a diode switches on. Since 
periodically fired thyristors have constant switch on times (we 
assume no misfires) and turn off just like a diode, (6.7) also 
holds for periodically fired thyristors. 

We now derive as an example the Jacobian for the three 
phase diode bridge converter shown in Fig. 3. The dc load 
is a filter inductance Ld in series with a load resistance & 
and a constant voltage source. The ac system that feeds the 
diode bridge is modeled as a Thevenin ac source behind 
a commutating inductance L,. The commutation time ,u is 
assumed to be less than T/6. 

Fig. 1 shows the commutating circuit starting from when 
diode 1 turns on to when diode 5 turns off. The equations for 
the commutating circuit and the circuit when diode 5 turns off 
and only diodes 1 and 6 conduct are presented at the end of 
Section II. Section II also computes the matrices A,, for the 
commutating circuit, A,E = -&/L for the circuit just after 
diode 5 turns off, and P = (LJL, (L, + Ld)/L) relating the 
two circuits. 

Just before diode 1 turns on, only diodes 5 and 6 conduct, 
and the circuit trajectories lie in a line (hyperplane) specified 
by 0 = xi = ciz where cl = (l,O). A basis for vectors in 
this line is Qi = (0,l)“. Note that the hyperplane specified 
by cl, Qi when only diodes 5 and 6 conduct differs from 
the hyperplane specified by c, Q  when only diodes 1 and 6 
conduct. 

Now consider the map 4 which advances the state yi just 
before diode 1 turns on to the state y just before diode 2 turns 
on. Similarly to (6.6) the Jacobian of 4 is 

Q/, = eAodT/6-dpeAonC”Q1 

=e -(T/~-P)&/LL-~ 

x (&,L, + Ld) ; (ea ;a1)‘2 
>(I 

; 

where (Y = -2&p/(3& + 2Ld). If we assume circuit 
symmetry, the Jacobian of the Poincare map follows easily as 
DF = [D@. In the special case of zero resistance, Rd = 0 
and DF = [Dq%]” = [P5Q116 = (L, + Ld)‘/L’ which is 
independent of p and agrees with [22]. See [14], [15] for 
another example. 

VII. NICE COORDINATES FOR A SWITCHING CIRCUIT 

It is convenient to consider the switching of a particular 
diode and derive nice coordinates for the state both when the 
diode is on and when the diode is off. In this section, it does 
not matter whether the diode is turning on or off. Appendix 

B shows that nice coordinates x when the diode is on can be 
chosen so that c = dr andlx]’ is the energy stored in the circuit 
inductances and capacitances. (Appendix B uses Assumption 
2.1 and assumes that the inductance and capacitance matrices 
associated with the circuit differential equations are invertible.) 

To construct compatible coordinates when the diode is off, 
choose the basis vectors for the hyperplane to be orthonormal 
so that the columns of Q  are orthogonal and of unit length. 
Then since (2.5) and (2.7) yield CQ = 0 and cd = ccT = I, 
(Qld) = (Q]cT) is orthogonal;and (2.8) implies that P = QT. 
Moreover, in the nice coordinates for the circuit with the diode 
off, Iy12 = yTy = yTQTQy = xTx = lx12 so that ]Y(~ is also 
the stored energy in the circuit inductors and capacitors. We 
call these norms “energy norms” for the state space when the 
diode is on or off. 

Let I I . I I be the matrix norm induced by the energy norms. 
Then llQ ll = 1 since IQy12 = yTQTQy = yTy = 1~1’ 
and I&y] = Iy]. Moreover, llPl[ 5 1 since (2.11) implies 
that ]x12 = xTx = xT(PTP + cTc)z = IPxl’ + Ic~12 and 
IW I 1x1. 

VIII. LOCAL STABILITY 

This section deduces the stability of a periodic orbit from 
the Jacobian formula (6.7) and the results of Section VII. All 
the diode switchings are assumed to satisfy the transversality 
conditions (3.4) or (3.5) so that Lemma 6.1 implies that 
the Poincare map F is differentiable. The capacitance and 
inductance matrices for each circuit are assumed invertible 
so that the nice coordinates of Section VII may be chosen for 
the state space before and after each switching. 

As in Section VI, suppose that the periodic orbit has k 
successive switching patterns and Poincare map F. Switching 
pattern i has matrix Ai and lasts for time CJ;, and the coordinate 
change between successive switching patterns i and j is Rij. 
Energy norms are chosen for the state space of each switching 
pattern. Consider the ith circuit with zero input. This linear 
RLC circuit has state transition matrix eAit, and the energy 
stored in the inductors and capacitors cannot increase in this 
circuit. Therefore, in the induced matrix norm eAat II ‘II 5 l, 
i= 1. .. Ic. Moreover, the results ]]Q]] = 1 and lIPI 5 1 from 
Section VII imply that each II&j I] I 1. Applying these results 
to the Jacobian formula (6.7) yields 

IIDFII I lIeAla IlllR~21111eAza21111Rz~ll .. . lleAkok llll&~ll 5 1 
and hence that all the eigenvalues of DF lie within or on 
the unit circle. If the eigenvalues lie strictly inside the unit 
circle, then the periodic orbit is asymptotically stable. If 
some eigenvalues lie on the unit circle, then the stability 
of the periodic orbit is not determined by the Poincare map 
linearization DF. In any case, the eigenvalues cannot leave 
the unit circle, and this precludes the periodic orbit becoming 
unstable via a conventional bifurcation. More precisely, the 
transversality conditions of generic bifurcations requiring the 
bifurcating eigenvalues to leave the unit circle at nonzero 
speed cannot be satisfied. 

Asymptotic stability results are easy to obtain if the linear 
RLC circuits are also assumed to be dissipative so that the 
stored energy in the linear RLC circuits strictly decreases. For 
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example, consider the periodic orbit of Section VI with a single 
diode switching on and off once and assume that the circuit 
with the diode on is dissipative so that A < -6 for SOme E > 0 
(see Appendix B). The linear RLC circuit with the diode on 
and zero input has state transition ~matrix eAt. If v(t) is any 
trajectory of this RLC circuit, then integration of -$]w(t)] = 
$I@% = vT(AT + A 
e-Et(w(0)] so that IleA! 5 emEt. Moreover, since A 5 --E +- i 

v/(21w1) 5 -+I yields leAtw(0)l < 

PAQ = QTAQ 5 -6, it follows similarly that IlePAQtll 2 
e --Et. Now we obtain from the Jacobian formula (6.3) 

IJDFso, 11 = IleAaQePAQ(T-a)P~II 5 e--Eue--E(T--Q) = eecT 

so that the eigenvalues of DFSoff lie strictly inside the unit 
circle within e-CT of the origin, and the periodic orbit is 
asymptotically stable. 

We conclude that if the linear RLC circuits encountered 
during the periodic orbit are dissipative, then all periodic orbits 
that satisfy the transversality condition at each switching are 
asymptotically stable. However, in general, the periodic orbit 
may not be unique or globally stable; in the special case 
of periodically fired ideal thyristors in a basic static VAR 
control circuit, the Poincare map is discontinuous where the 
transversality conditions are not satisfied, and the discontinuity 
allows two asymptotically stable periodic orbits in the state 
space [26]. 

IX. SWITCHING ~ME CONTINUITY AND BIFURCATIONS 

This section describes how switching times vary smoothly 
with circuit parameters when transversality conditions on the 
circuit switchings are satisfied and how switching times can 
jump or bifurcate when the transversality conditions fail. The 
switching time bifurcations are fold bifurcations of the diode 
current or voltage. 

In order to analyze stability using bifurcation theory, we in- 
troduce a real parameter A that varies quasistatically and upon 
which the circuit elements or inputs smoothly depend. When 
this parameter dependence is taken into account, differential 
equations (2.1) for the circuit with the diode on become 

2 = A(X)z + B(X)u(t, X) (9.1) 

and the corresponding flow is written $on(z(0), t, X). 
We describe only the bifurcation of a diode switch off 

because the analysis for a diode switch on is essentially the 
same. We suppose that at some particular time, which it is 
convenient to specify as time zero, the diode is on with positive 
current and that this situation persists over the parameter range 
of interest. That is, if we write Q(X) for the state at time zero, 
then id(O) = c~u(X) + bu(0, X) > 0. The initial state x0(X) is 
assumed to be a smooth function of X. 

Define f : R x R + R to be the diode current assuming 
that the’ diode is on (short circuited) for all time 

f(h A) = m(t) = &n(z0(~), 6 A) + wt, A). (9.2) 

f is a smooth function of t and X. Since the diode is 
assumed to be short-circuited, f can be negative and in 
practical periodically forced switching circuits, f will have 
many positive roots. 

The first or smallest positive root of f is the diode switch 
off time s,ff 

soa( min{s I f(s,A)= 0 and s > 0). (9.3) 

Here we regard sO~(X) as a function of X. f(t, X) is identical to 
the actual diode current id(t) for t E [0, +,a]. The first positive 
root of a function need not vary smoothly as parameters change 
because roots may disappear or new roots may be created. The 
switch off usually satisfies transversality condition (3.4), which 
may be rewritten in terms of f as 

af 
at( S&,X*) < 0 (9.4) 

and it follows that the switch off time varies smoothly as the 
parameter changes; Appendix A proves a slight generalization 
of 

Lemma 9.1: If f is smooth, and the diode switch off at time 
s,a(Xr) satisfies (9.4), then sO~(X) is a smooth function of X 
for X sufficiently near X1. 

It is easy to see that (9.4) implies via the implicit function 
theorem that there is a root s(X) of f with s(Xi) = s,a(Xl) 
that varies smoothly for X near Xi. However, the proof -of 
Lemma 9.1 also establishes that no new roots are created in 
the interval (0, s(X)) for X sufficiently near X1. (Any new 
root in the interval (0, s(X)) would prevent the root s(X) near 
s,a(Xi) from being the first positive root of f required by 
definition (9.3).) 

Jalali et al. 1141, [15] describe in detail the discontinuous 
increase or decrease in switch off time as X varies through 
a critical value X, as fold bifurcations of f in which pairs 
of roots of f disappear or appear. We briefly summarize 
this process before giving the precise conditions for the 
fold bifurcation. Consider the first three positive roots of f. 
Switching times discontinuously increase when the first and 
second roots of f coalesce to form a double root and then 
disappear in a fold bifurcation so that the switching time jumps 
forward to what was previously the third root. This process 
can be reversed to cause a switching time to discontinuously 
decrease. A new double root of f can be created by a fold 
bifurcation and then split into a first and second root in such a 
way that the previous switching time becomes the third root, 
and the switching time jumps backward to the new first root. 

The first condition for the fold bifurcation is that f has 
zero gradient at the double root; that is, $$ (+,a, X,) = 0 and 
(9.4) is not satisfied. The second condition g(s,~, X,) # 0 
ensures that the bifurcation occurs as X varies through A*, and 
the third condition 3 (~,a, A*) > 0 ensures the quadratic 
form of the graph of f at the double root. These transversality 
conditions are standard in bifurcation theory and expected to 
be generically satisfied (e.g. [S]). Fold bifurcations in the roots 
of a general smooth function’ satisfying these three conditions 
occur generically as a single parameter is varied. Since the 
function f associated with the diode current is not expected to 
be restricted by special symmetries or conditions, we expect 
switching time bifurcations to occur generically. 
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Fig. 4. Simple diode circuit. 

X. EFFECTS OF SWITCHING TIME BIFURCATIONS 

This section considers the effects of a switching time 
bifurcation on a stable periodic orbit of a circuit with thyristors 
or diodes. If a thyristor turn off in the periodic orbit undergoes 
a switching time bifurcation when the gate pulse is off, then 
the switch off time jumps to an earlier or later time. The 
typical consequence is that stability of the periodic orbit 
is lost, and a circuit transient starts. These switching time 
bifurcation instabilities have been observed in simulation and 
experimental work on a static VAR control circuit [ 141, [ 151. 

If a thyristor turn off undergoes a switching time bifurcation 
when the gate pulse is off, then there is only one switching 
time created or destroyed because the gate pulse being off 
prevents the thyristor turning on just after the thyristor turn 
off. On the other hand, bifurcations of a diode switching off 
time can involve two switchings of the diode. That is, it is 
possible that both a switch off and a switch on are created or 
destroyed in the bifurcation. We suggest why this can typically 
happen. Consider a switch off of a diode at a switching 
time bifurcation at time sO~(X,) and parameter value X,. 
The transversality conditions (3.4), (3.5) are assumed to be 
satisfied. At a turn off time s,,e(X) just before the bifurcation 
destroys the switch off time, we have from (3.8) and (3.9) 

Hence, as the bifurcation approaches, wd(s,~( X)+) --+ 0, 
and G(s,ff(X)+) + &$&(s,fi(X*)) > 0. Sufficiently 
close to the bifurcation, we have ~d( sO~(X)+) < 0 and 
&(s,a(X)+) > 0. To first order 

“Jd hff(x) + ( 
--z)d(soff (A)) 
Gd(&ff (A)> > 

= wd(s,ff(x)) + iJd(h,ff(x)) ;;;F;$;’ = 0. 
0 

That is, a linear prediction of the diode voltage predicts 
turn on at time 

son(~) = soff(~> + -~d(%ff(~)) 
fid(Soff (A>> * 

so&X) > soff(X) and son(X) -+ soa as the bifurcation 
approaches. This suggests that a switch on quickly follows 
the switch off before it disappears and that the switch 
off and switch on coalesce together and disappear as 
the bifurcation occurs. 

This behavior. occurs in the simple diode circuit shown 
in Fig. 4, when the circuit resistance is positive. When the 
constant bias X of the voltage source lies in the interval 
(-1, 0), there is a unique and asymptotically stable periodic 

orbit in which the diode switches twice per cycle. In this mode, 
the Poincare map at the periodic orbit with initial time when 
the diode is off simply maps zero current to zero current, and 
the Jacobian of the Poincare map is zero. That is, a small 
perturbation in one cycle vanishes before the next cycle. 

If X increases through 0, the periodic orbit persists and 
remains asymptotically stable, but the diode never turns off. 
The stability of the periodic orbit is now governed by the 
resistor so that the Jacobian of the Poincare map changes 
discontinuously when X increases through zero. If X decreases 
through - 1, the periodic orbit becomes a constant zero current, 
and the diode never turns on. In both these switching time 
bifurcations, the two switching times coalesce and disappear. 
The effect of the switching time bifurcations is a mode change 
in the circuit, and asymptotic stability is not lost. Note, 
however, that in the extreme case of zero circuit resistance, 
the periodic orbit, although stable for X 5 0, disappears for 
X > 0, and the circuit trajectory becomes unbounded. 

In a general diode circuit, suppose [tl, t2] is a time interval 
between two diode switchings corresponding to switching 
state j, and there is a switching time bifurcation at time 
t,, E [tl, t2] in which turn off and turn on of a diode appear 
together. The corresponding factor eAj(t2-t1) of the Jacobian 
in (6.7) jumps to eA3(t*-t1)QPeAj(t2-t*) as the bifurcation 
occurs. QP corresponds to a switch off and an immediately 
following switch on, where Q  and P are the coordinate 
changes associated with the switching at t,. This observation 
shows the discontinuity of the Jacobian of the Poincare map 
at a switching time bifurcation. 

XI. THE JACOBIAN DOES NOT PREDICT 
SWITCHING TIME BIFURCATIONS 

Switching time bifurcations are not conventional bifurca- 
tions because they are not detectable or predictable from the 
eigenvalues of the Jacobian of the Poincare map of the periodic 
orbit. For example, an asymptotically stable periodic orbit in a 
thyristor circuit with eigenvalues strictly inside the unit circle 
can encounter a switching time bifurcation and lose stability . 
This section uses the simplification of the Jacobian to explain 
this phenomenon. 

We consider as an example the periodic orbit of Section VI, 
which contains one switch on and one switch off and suppose 
that the switch off undergoes a switching time bifurcation. The 
start of the period is denoted by tz and t2 < s,, < s,,~ < 
t2.+ T. 

The case of the switch off time s,tf discontinuously de- 
creasing by a fold bifurcation of f so that new roots of 
f appear in the interval [s,,, ~,,a] is straightforward. The 
transversality condition continues to be satisfied at the root 
of f corresponding to the previous switch off time and the 
transversality condition is only violated at the new roots of f. 
Since the fold bifurcation occurs in the interior of the interval 
Is On, s,~], it is clear that the Jacobian and its eigenvalues are 
unrelated to the fold bifurcation. 

The analysis of the Jacobian in the case of switching 
times suddenly increasing by the previous switch off time 
disappearing in a fold bifurcation is more subtle. Consider the 
formulation of the Poincare map similarly to (4.8) as a map 
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Gt, explicitly depending on s,n and a constraint equation to 
determine s,~ 

dt2 + T) = Gt, (y(tz>, UT, A> (11.1) 

0 = f (%ff, y(t2), A) (11.2) 

where G,(Y,s,/\) = $1(4d~,h,tl),s> and f(s,y,A) = 
c&(y, t2,s) = cz(s) is the diode current id(t) for t < s,% 
and the diode current assuming that the diode does not turn 
off for t 2 son. The constraint (11.2) is simply id(d&) = 0, 
and the transversality condition (3.4) becomes 

and the Jacobian DFt, is given by 

DFt, = DGt, + ds dGt2 Ds off. 

(11.3) 

If the switch off at s,tf satisfies (11.3), then the gradient 
DS,R of ~,,a with respect to ‘y(tz) can be computed by 
differentiating and rearranging (11.2) 

(11.5) 

As the fold bifurcation is approached, g (~,a) -+ 0 and 
one might argue from (11.5) and (11.4) that 3 (sO~) -+ 0 
implies that Ds,tf + cc and that IIDFt, I I --+ co. Moreover, 
I(DF,, I( --f cc implies that at least one eigenvalue of the 
Jacobian would leave the unit circle as the fold bifurcation is 
approached so that there would be a conventional bifurcation 
just before the switching time bifurcation is encountered. How- 
ever, this argument does not apply because the simplification 
of the Jacobian in Section IV states that Gt 

a& 
is independent of 

the switch off time to first order so that -& = 0 and hence 
that the Jacobian DFt, = DGt, and -is independent of the 
behavior of DS,R (see (4.84.9)). That is, the eigenvalues of 
the Jacobian give no warning of the switching time bifurcation. 
It is argued above that if the simplification did not apply, 
then the circuit would typically lose stability in a conven- 
tional bifurcation before the switching time bifurcation was 
encountered. Thus, the simplification can be seen as essential 
in allowing the switching time bifurcation to occur. 

XII. DAMPING OF INCREMENTAL 
ENERGY IN IDEAL DIODE CIRCUITS 

Sanders [29] uses incremental energy methods to prove that 
circuits with incrementally passive diode models are stable. 
This section extends these methods to prove the stability of 
an RLC circuit with ideal diodes and time dependent sources. 
Diodes are seen to damp incremental energy and contribute to 
circuit stability. The proof is more general than the results of 
Section VIII because it proves stability for any periodic orbit 
of the diode circuit even at a switching time bifurcation or 
when Jacobian eigenvalues are on the unit circle. However, 
the corresponding proof for thyristors fails, and we discuss 
this difference between diode and thyristor circuits. 

Number all the circuit components, including on and off 
diodes. For a given trajectory of the circuit, let ik(t) and 

r&(t) be the current in and voltage across circuit component 
number k as a function of time t. For definiteness, current 
and voltage conventions are chosen such that an on diode 
conducts positive current and an off diode withstands negative 
voltage. Let i;(t) and w6 (t) be the kth component current 
and voltages associated with a different circuit trajectory and 
define &k = ik(t) - $(t) and &l, = r&(t) - W;(t). Then, 
despite the circuit, switchings, Tellegen’s theorem applies to 
the incremental currents and voltages at every instant so that 

‘0 = c &,$hr, 
k 

= c b-i&& + c &k&k + c &/&k 
inductors capacitors resistors 

+ c b”ikfivk + c &,&,k. (12.1) 
diodes sour‘ces 

Now use the nice state space coordinates z of Section VII 
to define the circuit incremental energy 

ISx12 = SxTSx where sx = x(t) - x’(t). 

By reexpressing the circuit incremental energy in terms of 
components [28] 

Isx12 = ; c ‘h(&)2 + ; c ck(6?&)2. (12.2) 
inductors capacitors 

The incremental inductor currents &l, and incremental capaci- 
tor voltages 6Wk are smooth between switchings. Then for any 
time between switchings, differentiate (12.2) and use (12.1) 
to obtain 

~lsx12 = c Giksvk + c &k&k 
inductors capacitors 

= - c &&k - c 6i&k - c &k&&. 
resistors diodes sollrces 

(12.3) 

The summation over sources vanishes because && = 0 
for voltage sources and &k = 0 for current sources. The 
summation over resistors is greater than or equal to zero. 
Consider one of the terms of the summation over diodes 

C%kC%,k = (ik(t) - i;(t))&(t) - ‘t&(t)) 

=I 

0; diode is on for both trajectories 
0; diode is off for both trajectories 

-&(t) w;(t); diode is on for undashed trajectory 
and off for dashed trajectory 

-ii(t) vk (t); diode is off for undashed 
trajectory and on for dashed trajectory. 

Since the diode conducts positive current and withstands 
negative voltages, &k&k > 0 and 

c 6ik6wk 2 0. (12.4) 
diodes 

Hence, the right-hand side of (12.3) is less than or equal to 
zero and 

&I 50 
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between switchings. Since ]&xl is continuous at switchings, 
integrate over a cycle to obtain 

or 
IF(x) - F(x’)l < Ix - 2’1. (12.5) 

Equation (12.5) implies the stability of any fixed point of the 
PoincarC map F and the corresponding periodic orbit. Equation 
(12.5) also implies that F is continuous. If the inequality in 
(12.5) is strict for all x # x’ due to resistive losses, then 
uniqueness and global asymptotic stability of a periodic orbit 
can be deduced by Lyapunov methods [29]. 

The derivation of (12.4) shows that a trajectory perturbed 
from a periodic steady state experiences damping of its in- 
cremental energy related to the diode switchings during the 
time intervals when the switching state of the perturbed and 
steady state trajectories differ. In particular, this incremental 
energy analysis predicts damping associated with a diode turn 
off. This damping is also described by the zeroing of the 
incremental diode or thyristor current at switch off by the 
projection matrix P corresponding to the switch off in the 
formula for the Jacobian of the Poincare map [5]. (Also, see the 
reduction in energy 1 PSx( 5 ]&xl due to applying P at the end 
of Section VII.) The incremental energy analysis also predicts 
a damping effect associated with a diode turning on, but the 
corresponding matrix Q  in the Jacobian formula preserves en- 
ergy (( Qsxl = I&x]). That is, the incremental energy analysis 
predicts damping while the Jacobian predicts no damping. This 
can be resolved by noting that when the diode turns on, it 
has zero voltage, and the diode current increases quadratically 
from zero. Hence, the diode current is zero to first order at 
turn on, and there is no damping effect to first order and 
no damping predicted by the Jacobian. Thus, the incremental 
energy damping at turn on is a second order effect. In contrast, 
at turn off, the diode voltage is immediately negative (see 
(3.8)), and this first order damping effect is apparent both from 
incremental energy considerations and the Jacobian. 

The proof fails if thyristors are substituted for the diodes. 
In particular, (12.4) of the proof can fail because a thyristor 
does not turn on when its voltage becomes positive and the 
firing pulse is off. If two trajectories in a thyristor circuit are 
always close to each other, then since a thyristor turns off 
just like a diode, (12.4) will hold, and the incremental energy 
will be damped. (In the absence of a misfire, the thyristor 
will turn on at the same time for both trajectories.) However, 
if the two trajectories become far apart, either because of 
widely separated initial conditions or a nearby switching time 
bifurcation, then the positive thyristor voltage can make (12.4) 
fail, and the incremental energy between the trajectories can 
increase. Rajaraman et al. [26] give an example of a thyristor 
switching circuit with a discontinuous PoincarC map and two 
asymptotically stable periodic orbits. 

XIII. CONCLUSION 

We give a general account of the stability and bifurcations 
of RLC circuits with periodic sources and ideal thyristors or 
diodes. The main assumption is that each thyristor or diode 

has a cutset of inductors and current sources. The periodic 
steady states of the circuit are studied using the Poincare map, 
and transversality conditions at the switchings are shown to 
guarantee the smoothness of the Poincart map. A simple and 
exact formula for the Jacobian of the Poincart map is proved, 
and the stability of the Jacobian is deduced by energy methods 
once special coordinates are chosen. It follows that stability 
cannot be lost by conventional bifurcations. 

However, when the transversality conditions fail at a switch- 
ing, the switching times typically jump in a switching time 
bifurcation. Switching off times are determined by the first 
positive root of the thyristor or diode current, and a switching 
off time bifurcates when the first positive root disappears 
or appears in a fold bifurcation. Switching time bifurcations 
of a thyristor circuit can cause the PoincarC map to be 
discontinuous and the periodic orbit to become unstable [14], 
[ 151. The Poincare map of diode circuits is continuous, and 
switching time bifurcations of a diode circuit can cause mode 
changes in the circuit operation and lack of differentiability of 
the Poincare map. The simplification of the Jacobian formula 
is used to explain why the switching time bifurcations occur 
and are not predicted by the eigenvalues of the Jacobian. 

Both incremental energy arguments and the Jacobian for- 
mula predict damping associated with diodes or thyristors 
turning off. This damping can contribute to stability of high 
power switching devices. In particular, Rajaraman et al. [27] 
report significant damping of subsynchronous power system 
oscillations by a thyristor controlled series capacitor and Jalali 
et al. report damping of a static VAR control circuit [5], [15]. 

The Jacobian of the Poincare map describes the small signal 
stability of periodic orbits and is also useful in computing 
steady state solutions by Newton’s method [2], [7], [21], 
1321. The simplification of the Jacobian that follows from 
]I211 and is newly derived in this paper shows that the 
Jacobian varies as a function only of the time spent in each 
switching pattern. The resulting simplified Jacobian formula is 
much more useful for computations and theory. The Jacobian 
typically becomes more complex when some of the switching 
times are controlled but the simplification of the part of the 
*Jacobian corresponding to the uncontrolled switchings remains 
.valid and useful [ 161. In particular, we expect the Jacobian 
simplification for ideal thyristors to continue to be useful in 
studying damping, resonance and dynamics in high power 
thyristor controlled reactor circuits for static VAR control and 
Bexible ac transmission [5], [ 14]-[ 171, [26] even as the circuits 
become more complex. 

APPENDIX A 

Let X E R” be a parameter and f: R x Rm -+ R 
be the diode current f(t, X) assuming that the 
diode does not turn Off. The switching time 
sO~(X) = min{s I f(s,X) = 0 and s > 0). 

Lemma Al: If f is a smooth function and the diode switch 
off at time s,~(Xi) satisfies the transversality condition 
$$(s,,e(X,)) < 0, then there is an E > 0 such that son(X) is 
a smooth function of X for X E B(E), where B(e) is the open 
ball of radius E and center Xi. 



528 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 9, SEPTEMBER 1995 

Proofi The implicit function theorem and 
$$(sO~(Ar)) < 0 imply that there is an ~1 > 0 and a smooth 
function s: B(el) + R such that s(A1) = s,fi(Xi) and 
f(s(x),X) = 0. $&(s(X,)) < 0 and the continuity of g and 
s imply that there is a 6 > 0 and an ~2 with 0 5 e2 5 e1 such 
that g(s(X),X) < - 6 < 0 for X E B(Q). By the definition 
of derivative, for X E B(E~), we have ]if(s(;\) - h,X) + 
%(s(X),X)I --+ 0 as h 

~(44, A) . 

-+ 0. Since if(s(/\) - h, A) + 
1s continuous in X and B(Q) is compact, the 

convergence is uniform for X E B(Q). That is, there is an 
ho independent of A such that 0 < jhl < 2ho implies that 
]if(s(x) - h, X)+g(s(A), X)] < g for X E B(c2). It follows 
using g(s(X),X) < -6 < 0 that if(s(A) - h,X) > 0 and 
hence that sign {h}f(s(X) - h,X) > 0 for X E B(Q) and h 
with 0 < IhJ < 2ho. Now use the continuity of s to choose 
Q with 0 < es < ~2 such that Is(A) - s(Xl)] < ho for 
X E B(Q). Then it follows that for X E B(Q) the unique 
root of f in [s(X,) - ho,s(Xl) + ho] is s(X). 

The definition of s,a implies that f(t, Xl) > 0 for t E 
[0, s,tf(Xl) - ho]. Write m = min{f(t, Xl)] t E [0, s,n(Xr) - 
ho]} and observe that m > 0. The uniform continuity of f on 
[0, s,n(Xr) - ho] implies that there is an E with 0 < E < c3 
such that for X E B(E), If(t, A) - f(t, X,)1 < m/2 and hence 
that f(t, A) > 0 for t E [0, &,a(/\~) - ho] = [0, s(X1) - ho]. 
This result and the result of the previous paragraph imply that 
the unique root off fort E [0, s(A~)+ho] is s(X) if X E B(E). 
That is, for X E B(E), s(X) is indeed the first positive root of 
f and sO~(X) = s(A) is a smooth function of X. 0 

APPENDIX B 

This appendix constructs nice coordinates x for a circuit 
with a diode on for which c = dT and (z12 is the circuit 
energy. Standard methods [18], [28], of which we assume 
some familiarity, yield the following differential equations for 
the circuit when the diode is on 

(; ;)-$(z) = (z -$)(~)+R’L. (Bl) 

The state vector consists of inductor link currents it and 
capacitor branch voltages wuc. C is an inductance matrix, C is a 
capacitance matrix, and Y, ‘H, 2 describe a resistive multiport 
associated with the circuit. L, C, JJ, and 2 are symmetric and 
positive semidefinite [ 181, 11281. We assume that L and C are 
positive definite to guarantee their invertibility. 

Now we consider the rederivation of the circuit differential 
equations when the diode is off and treated as a voltage source 
-vd to make clear the way in which the off diode contributes 
additional terms to these equations. The first step is to choose a 
normal tree; that is, the tree links contain the maximum number 
of inductances, and the tree branches contain the maximum 
number of capacitors. We claim that the normal tree can be 
chosen so that the diode is a tree branch and the inductors 
in the diode cutset K. are links. For if the diode is chosen 
as a link, then its associated loop must contain one of the 
inductors in r; as a branch. Then the tree links do not contain 
the maximum number of inductors because modifying the tree 
by making the branch inductor a link and the diode a branch 

increases the number of inductor links by one. Therefore, the 
diode is a branch. Moreover, the only circumstance in which 
an inductor in IE is a branch is that it is contained in a cutset of 
all inductors. Since the cutset of all inductors must be distinct 
from the cutset r; (IF. contains the diode), at least one inductor 
in the cutset must not be an element of IE, and we can modify 
the tree to make the inductor not in K. a branch and the inductor 
in K a link. Therefore, the normal tree can be chosen so that 
all the inductors in K are links. 

Applying KCL to the cutset K yields the current id in the 
diode branch in terms of components of the state 

id = 032) 

Now use Assumption 2.1 and assume that all the inductor links 
in IE are oriented in the same direction to ensure that the row 
vector C contains ones in positions corresponding to inductor 
links in K and zeros elsewhere. 

The circuit differential equations are obtained by applying 
KVL to the loops associated with the inductor links and KCL 
to the cutsets associated with capacitor branches. Then the 
resistance branch voltages in the equations are expressed in 
terms of the state by applying KCL to cutsets associated with 
the resistance branches, and the link conductance currents in 
the equations are expressed in terms of the state by applying 
KVL to loops associated with the conductance links. 

For inductor links in the cutset ri, the associated loop must 
include the diode so that the diode voltage appears in that 
equation. The diode is included in the loop exactly once and 
with the same orientation for each of the inductor links. For 
inductor links not in the cutset K, the associated loop does not 
include the diode so that the diode voltage does not appear in 
the corresponding equations. Moreover, the resistance branch 
voltages in any of these equations do not depend on the diode 
voltage because the cutset associated with each resistance 
cannot contain the diode branch. For capacitor branches, the 
associated cutset cannot contain the diode. Moreover, the 
conductance link currents do not depend on the diode voltage 
because the loop associated with each conductance cannot 
contain the diode branch. (Any loop containing the diode 
branch must also include an inductor link in IE.) 

Formulating the circuit equations as above shows that when 
the diode is off, the diode voltage Wd appears as an additional 
term in (Bl) according to 

That is, the off diode only contributes a term vd to each of 
the equations corresponding to inductive links in the cutset K. 
Now change coordinates according to 

A4 is symmetric and positive definite since L and C are 
assumed invertible. Equation (B3) become 

k=Ax+Bu-cTvd U34) 
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A = (MT)-l (-r$ ---)M-‘, 

B’= (MT)-lB, c = EM-l. 035) 

The positive semidefiniteness of Y and 2 and the form of (B5) 
imply that A is negative semidefinite. For dissipative circuits, 
A is negative definite. Moreover, in the nice coordinates (B2) 
becomes 

id = cMM-lx + bu = cx + ih. 036) 

Comparing (B4) with (2.6) and (B6) with (2.2), it is clear 
that c = dT in the nice coordinates. Moreover, in the nice 
coordinates, the square of the Euclidean norm is 

)x12 = xTx = @,T)MTM 

= 

so that )x12 is the stored energy in the circuit inductors and 
capacitors [ 181. 
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