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Is Strong Modal Resonance a Precursor to Power
System Oscillations?

lan Dobson Senior Member, IEEEJianfeng Zhang, Scott Greeridember, IEEEHenrik Engdahl, and
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Abstract—We suggest a new mechanism for interarea electric this phenomenon occurs when two damped oscillatory modes
power system oscillations in which two oscillatory modes interact coincide exactly. That is, the power system linearization has
near a strong resonance to cause one of the modes to subsequentl¥w0 conjugate complex pairs of eigenvalues that coincide in

become unstable. The possibility of this mechanism for oscillations both f d d . Thi incid . led
is shown by theory and computational examples. Theory suggests 0 requency an amping. IS COINCIGENCE IS callied a

that passing near strong resonance can be expected in generalfesonance, or, especially in the context of Hamiltonian systems,
power system models. The mechanism for oscillations isillustrated a 1:1 resonance. If the linearization is not diagonalizable

in 3- and 9-bus examples with detailed generator models. at the resonance, the resonance is calleireng resonance
Index Terms—Electric power systems, Hopf bifurcation, oscilla- [18]- Otherwise, if the linearization is diagonalizable at the
tions, resonance, sensitivity, stability. resonance, the resonance is callaglemkresonance. Here, we

are most interested in strong resonance. At a strong resonance,
the modes typically become extremely sensitive to parameter
variations and the direction of movement of the eigenvalues
OWER transactions are increasing in volume and varietyrns through a right angle. For example, an eigenvalue that
in restructured electric power systems because of the lakgeanges in frequency before the resonance can change in
amounts of money to be made in exploiting geographic diffetamping after the resonance and become oscillatory unstable
ences in power prices. Restructured power systems are expeeiethe damping changes through zero. The strong resonance is a
to be operated at a greater variety of operating points and clopsscursor to the oscillatory instability in the sense that the res-
to their operating constraints. One operational constraint whighance causes the eigenvalues to change the size and direction
already limits transactions under some conditions is the onsetétheir movement in such a way as to produce instability.
low frequency interarea oscillations [4], [10], [11], [16]. In practice, the power system will not experience an exact
We consider how changes in power system parameters costibng resonance, but will pass close to such a resonance and
cause low frequency oscillations. For example, parametge qualitative effects will be similar: the eigenvalues will move
changes such as bulk power transactions or generator redigickly and change direction as they interact and this can lead
patch change the power system equilibrium, and hence changescillatory instability. Note, that we are describing how a lin-
the system modes and possibly cause oscillations. The mairization of the power system model changes as a generator
contribution of the paper is to suggest, analyze, and illustratedispatch changes the equilibrium at which the linearization is
a mathematical mechanism for low frequency oscillationsyvaluated.
Describing mechanisms which cause oscillations is an essentiaection Il reviews previous work. Section Il illustrates os-
step in developing sound methods of operating the powgillatory instability caused by strong resonance with parameter-
system up to but not at the onset of oscillations. ized matrices. Computational results showing oscillatory insta-
The power system linearization and its modes vary as powsility caused by strong resonance in 3- and 9-bus power system
system parameters change. Damped oscillatory modes @addels are presented in Section IV. Section V describes the gen-
move close together and interact in such a way that one of #l structure of strong resonance and relates this to what can
modes subsequently becomes unstable. An ideal versionbefexpected to be observed in general power system models.
A method to predict eigenvalue movement near strong reso-
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strong resonance, and split at right angles to move into thesonance in a power system with bilateral symmetry in the net-
right and left halves of the complex plane. The Hamiltoniawork but an asymmetric operating condition.
power system model in [14] represents electromechanicaHamdan [9] studies the conditioning of the eigenvalue and
mode phenomena with simple swing models for the generatoegyenvectors of a system very similar to that of [13]. The eigen-
Kwatny [14] gives a 3-bus example of the flutter instabilitwectors become ill conditioned near resonance and singular
and emphasizes that the flutter instability is generic in onalue measurements of the proximity to a weak resonance
parameter Hamiltonian systems. It is also possible to afidep” function) suggest that the system does pass near a weak
uniform damping to the conservative model in order to shifesonance.
the Hamiltonian eigenvalue locus a fixed amount leftwards in Klein and Roger®t al. [13] also discuss the modes near 0.7
the complex plane [15]. Then, two eigenvalues (necessarilylaf of the western North American power system. The Kemano
the same damping) approach each other in frequency, coalegererating unit in British Columbia can have high participa-
in an exact strong resonance and then split apart in dampitign not only in a local mode of 0.77 Hz but also in modes in-
One of these eigenvalues can then cross the imaginary axidving the southwest United States of 0.74 and 0.76 Hz. Klein
in a Hopf bifurcation to cause an oscillation. This is clearland Rogers regard this modal interaction as unusual, distinguish
a special case of strong resonance causing an oscillation. Tthigom the phenomenon observed in their symmetric power
Hamiltonian plus uniform damping model structure constrairsystem model and conclude that “Oscillations in one part of the
the eigenvalues to move either vertically along the line afystem can excite units in another part of the system due to reso-
constant damping or horizontally and causes the resonanceamce.” Mansour [21] shows large oscillations at Kemano due to
be exact. disturbances in the southwestern United States. It would be in-
Van Ness [23] analyzes a 1976 incident of 1 Hz oscillatiorieresting to determine if this modal interaction can be explained
at Powerton station with a 60-machine model of the midwesteoy a nearby strong resonance.
American power system with nine machines represented in deTrudnowski, Johnson, and Hauer [20] use a strong resonance
tail. The paper seems successful in reproducing the essential fessumption to improve Prony analysis identification of transfer
tures of the incident by eigenanalysis of the model. Referenftmctions from noisy ringdown data. Closely spaced poles with
[23, Fig.7] examines the effect of a variation of power and eXarge residues of nearly opposite sign are replaced by two poles
citation at Powerton unit 6. The eigenvector associated withirean exact strong resonance at the average of the previous pole
dominant eigenvalue shows significant changes near the ingiasitions. Trudnowski, Johnson, and Hauer show that this im-
bility that are attributed to a resonant interaction with anotheroves the estimates of the pole positions in a 27-bus, 17-gener-
nearby mode. Movement in the real part of close eigenvalua®r example which captures some features of the western North
when the excitation is lowered “seems to be due to a couplignerican power system. This result is supportive of the occur-
effect which has been observed in the model.” Unfortunatekgnce of strong resonance in power systems.
the data are sparse. Only one change in each power or excitatioDbeMarco [5] describes how increased loading of tie lines can
is presented, and firm conclusions about the nature of the resause a low frequency mode to decrease in frequency until the
nant interaction cannot be made. However, the features shatethplex conjugate eigenvalues coalesce at the real axis and then
between the account of the eigenanalysis of [23] and strong replit along the real axis so that one eigenvalue passes through
onance are suggestive. the origin and steady-state stability is lost in a collapse. This
Klein and Roger®t al. at Ontario Hydro [13] analyze local strong resonance of two real eigenvalues is sometimes called
modes and an interarea mode in a symmetric power systarmode-focus point or a critical damping of the two modes.
model with two areas and four machines. The symmetry is bilddeMarco demonstrates the phenomenon in a 14-bus system.
eral: each of the two areas has the same machines and transAjjarapu [1] also describes this phenomena and demonstrates
sion lines. However, the base case is a stressed case with Aréa a 3-bus system. The phenomenon is strong resonance of
1 exporting power to Area 2 over a single weak tie line. Theeal eigenvalues as a precursor to steady-state instability and
two local modes have eigenvalues that are practically equal, asdlearly analogous to strong resonance in the complex plane
each of the computed local modes has substantial componaratssing oscillatory loss of stability.
across the entire system. A small decrease in the machine inThere is a large amount of very useful previous work ad-
ertias in Area 2 causes the local modes to change substantidhgssing the tuning of control system gains to avoid oscillations
to have significant components only in their respective areashich we do not attempt to review here.
Klein and Rogers attribute these results to the nonuniqueness ofhe strong resonance and its implications for stability is
eigenvectors associated with a weak resonance. Although sknewn in mechanics. Seyranian [18] gives a perturbation
ilar eigenvector changes could be found near a strong resonamcalysis of eigenvalue movement caused by parameter changes
one might argue that a weak resonance could be expected herar both strong and weak resonance. Of particular interest is
because of the high degree of system symmetry. (A perfect tiie analysis showing how passage through a weak resonance
lateral symmetry would cause a weak resonance and excled® be perturbed to obtain strong resonances. Seyranian [19]
strong resonance between symmetric modes.) We do not e@nsiders strong resonance of a parameterized linear oscillatory
pect perfect bilateral symmetry in a practical power system. gystem. The eigenvalue movements near resonance are shown
perfect bilateral symmetry in a power system may require syno be hyperbolas to first order and a procedure for calculating
metry of both the network and the operating point; The 4-bdlse hyperbolas from the eigenstructure is given. The role
computational example in the thesis of Jones [12] shows a strasfgthe resonance as a precursor to instability and in altering
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Fig. 1. Two modes of matrid/, encountering strong resonance. Fig. 2. Two modes of matricel®/> andM; moving near strong resonance.
. . . - . . 1 2 3
which mode goes unstable is described and two applications in @ ] @
mechanics are presented.
Recent work in the thesis of Jones [12], building on the con-

ference version of this paper [7], advances the computational

examples of strong resonance. Jones shows strong resondffcd: 3-bus power system.
near 0.7 Hz of two well damped electromechanical modes of

a 19-machine dynamic model of the western North Americ&$ the parameter is varied. Consider a matfixwhich is a per-
power system. Since both modes are well damped, no osciltarbation of matrixi;
tory loss of stability is caused. The results confirm the approxi-

L 0 0 0O
mate coincidence of mode shapes near the strong resonance and
i i 0 01 0
the predicted effects of perturbing the resonance. Mo = M + Q)
0 0 0O
[ll. | LLUSTRATION OF STRONG RESONANCE 1 0 0 0

This tl_JtoriaI sectior_l illustrates strong resonance and near g eigenvalues all, vary as shown in Fig. 2(a) as varies
onance in complex e_|genvalues of parameterlzed matrices. from —2 to 2. Note how the eigenvalues come close together
Consider the matri®/, parameterized by the real numker 5,4 quickly turn approximately through a right angle. There is
a marked effect of coming close to the resonance.

—1+25 14y 0 0 A different way to perturbi/; is the matrix
a —1+2j 0 0
M, = , . 0 00 0
0 0 -1-2 1—y
0 0 1-2j Ms=M 0 -1 00 )
@ —1—2 = + .
J 3 1 0 0 0 0
M, is a complex matrix, but it is structured to be similar to the 0 0 0 -1
real matrix ) o )
The eigenvalues alf3 vary as shown in Fig. 2(b) as varies
-1 1 2 1 from —2 to 2. Both the eigenvalue movements in Fig. 2 are close
a -1 0 2 to the eigenvalue movementin Fig. 1, but a different eigenvalue
o 1 _1 1 becomes unstable in Fig. 2(a) and (b).
0 -2 o -1 IV. POWER SYSTEM COMPUTATIONAL RESULTS
(note that the x 2 submatrices ofi/; are complex conjugate).  This section shows examples of 3-bus and 9-bus power
At o« = —2, the eigenvalues o, are —1.64 + 3.555 and System models passing near strong resonance as generator

—0.36 + 0.45j. As « varies from—2 to 2, two of the eigen- Power is redispatched. In both cases, the modal interaction
values of M; vary as shown in Fig. 1 (these eigenvalues af€ar strong resonance leads to oscillatory instability. The 3-bus
—1+ 2§ + /T + j /). Each eigenvalue shown in Fig. 1 hagesults first appeared in [8].
a complex conjugate which moves correspondingly below the
real axis. Ata = 0, the eigenvalues coincide at the strong re) 3-Pus System
onance at-1 + 25. M; is not diagonalizable at the resonance. The 3-bus system shown in Fig. 3 consists of generators at bus
As « increases through zero, the eigenvalues change directioand bus 3 and a constant power load at bus 2. The generator
by a right angle. The eigenvalue movement is fast near the resadels are tenth order and the system parameters are reported in
onance. Indeed, exactly at the resonance, the eigenvaluesAgpendix B. As the generator dispatch is varied to increase the
infinitely sensitive to parameter variation. Note how one of thgower supplied by bus 3, two damped complex eigenvalues vary
eigenvalues becomes unstable after the resonance. as shown in Fig. 4(a). The eigenvalues are initially-@t4+8.35

Fig. 1 is not typical because an exact strong resonance is and—0.9 + 4.3j and are stable. As the power supplied by bus
countered. It is more typical to come close to strong resonar@creases, the two eigenvalues approach one another, interact,
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Fig. 5. 9-bus eigenvalues as dispatch varies.

V. STRUCTURE NEARRESONANCE AND GENERICITY

This section describes in general how two oscillatory modes

T T of the Jacobian matrix vary when they are near a strong or
. weak resonance and the genericity of these resonances. The de-
5 tailed mathematics to support all these results is presented in
Appendix A.
-2 -1 1

A. Strong Resonance

Fig- 4. 3-bus eigenvalues as dispatch varies. Near strong resonance the Jacobian is similar to a matrix

which includes at x 4 submatrixZ/. describing the following
and then one of the eigenvalues crosses the imaginary axis grfles of interest:
becomes unstable. A

1 0 O
The case shown in Fig. 4(a) is adjusted to show the eigen- A 0 o0 M 0
values coming close together and Rag = 1.07, whereV, ML = . = < ¢ ) . 3
is the voltage reference set point of the generators at buses 1 and 0 0 A" 1 0 Mg
3. Rerunning the case for decreased and incresed shown 0 0 p* X

in Fig. 4(b) and (c). Fig. 4(b) and (c) show typical perturbations , .
of the strong resonance. Observe that if one attempts to stab'€:A andy are complex numbers which are functions of the
lize the unstable eigenvalue of Fig. 4(b) by increading, then POWer system parameters. The eigenvaluet/pfare the same

this eigenvalue is indeed stabilized, but the other eigenvalue B8-h€ €igenvalues of the Jacobian corresponding to the two 0s-
comes unstable as shown in Fig. 4(c). This shows the importafé@tory modes of interest. _

of examining both modes when trying to stabilize the system | N€ behavior oft/¢. is governed by the submatrix

near strong resonance.

Al
Me = < ) .
B. 9-bus System poA

The form of the 9-bus system is based on the western Nogthe eigenvalues ai/c are
American power system from the text of Sauer and Pai [17].

There are 3 generators with 2 axis models and IEEE Type | A=A+ and A=A — /. (5)
exciters. More details may be found in Appendix B. Fig. 5 shows , ,

the eigenvalue movement when real power generation at pubherefore, the eigenvalues 81 are

is varied from 1.5 pu to 2.10 pu in steps of 0.05. Real power *

generation at bus 3 is fixed at 1.5 pu. AL Vi and A Vi)

The eigenvalues pass near resonance and then one ofaheé these are the eigenvalues of the Jacobian corresponding to
eigenvalues becomes oscillatory unstable. Note that the eigdre modes of interest. The idea is to study these modes by ex-
values initially move together by a change mostly in frequencgmining the eigenvalues and eigenvectord/ff.

It is the strong resonance which transforms this movement intoThe eigenvalues o/ coincide at\ wheny = 0 and this
a change in damping and hence instability. The eigenvalussthe condition for strong resonanckl- is nondiagonaliz-
move quickly near the resonance. able at resonance (alternative terms for “nondiagonalizable” are

(4)
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“nonsemisimple” and “nondefective”). The sensitivity of these inP‘}t alor_lg generalized
eigenvalues to the real or imaginary part;ofis +1/(2,/k), right eigenvectors
which tends to infinity ag: tends to zero. Ag moves in the

complex plane on a smooth curve through 0 with nonzero speed,
the argument of /z jumps by 90 so that the direction of the 1
eigenvalue movement changes by 90 52— 208+ 02 + w?

The right and left eigenvectors dfl are
output along

1 input along > right
< + \/ﬁ> and (£ym, 1). ‘ right >® generalized
eigenvectors eigenvectors

At the strong resonance at= 0, the eigenvectors are infinitely

sensitive to changes m, the right and left eigenvectors are or- 1
thogonal, and there is a single right eigenvector together with a
generalized right eigenvector. Astends to zero and the reso-
nance is approached, the two right eigenvectors become aligned
and tend to the right eigenvector @t= 0. Thus, the system
modes approach each othenatends to zero. The dependence

of this approach or/i: shows that this approach is initially slow

52— 208 4+ 02 +w?

output along
right eigenvectors

and then very quick near = 0. Fig. 6. Modes at strong resonance.
If the system is near strong resonance, then the following are
typical: C. Genericity of Strong Resonance

* The eigenvalues and eigenvectors are very sensitive 10 Pathe rarity of strong resonance can be examined using its codi-
rameter variations. o _ . mension [24], which is, roughly speaking, the number of inde-

* A general parameter variation causes the direction Egndent parameters that need to be varied to typically encounter
eigenvalue movementin the complex plane to turn quickiie resonance. The coincidence of two pairs of complex eigen-

through approximately a right angle. values of a matrix ak = o + jw typically happens with Jordan
« The right and left eigenvectors are nearly orthogonal. ., onical form

* The right eigenvectors of the two modes are nearly

aligned. This implies that the pattern of oscillation of the A1 0 0
two modes is similar. 0 X 0 0 6
_ 0 0 X 1 ©)
B. Mode Coupling at Strong Resonance 00 0 A\

We examine the time and frequency domain solutions at
strong resonance whem = 0. Assume that\ = o + jw A strong resonance of the form (6) without regard to the value
with ¢ < 0. The time domain solutions to the linear differ-of A occurs in the matrix (3) when the complex parametes
ential equations with matrix (3) are linear combinations df. Since this requires both the real and imaginary payt ¢
te®t cos wt, tet sin wt, ¢t cos wt and ¢t sin wt. Some be zero, this is a codimension 2 event. [On the other hand, the
perturbations mainly excite the:="* cos wt and te”* sin wt Occurrence of a strong resonance of the form (6) fomicular
solutions and these perturbations will cause oscillations th&lue of A = X requires botth = X andy = 0 and is a
grow before exponentially decaying to zero. Fig. 6 shows tig@dimension 4 event.]
frequency domain description in block diagram form. Thus strong resonance is a codimension 2 event and it can

Observe the input—output combination passing verticallle typically encountered when varying two parameters. Strong
down the page in Fig. 6 in which the output of the first dampeigsonance will not be typically encountered when varying one
oscillator feeds the second damped oscillator. This one-wagrameter, butitis still possible to pass near to strong resonance
mode coupling has interesting consequences for the powdien varying one parameter.
system behavior.

Consider two modes which initially are local to separate areRs Weak Resonance
of the power system. The modes are initially decoupled so thatAt a weak resonance of two complex modes, the Jacobian is
disturbances in one area will only affect the mode in that aresimilar to a matrix which includes 4 x 4 submatrix
Now, suppose that parameters change so that the two modes in-

. A0 0 O
teract by encountering a strong resonance. As the strong reso-
nance is approached, the mode eigenvectors will converge so 0 A 0 O @
that the modes are no longer confined to their respective areas. 0 0 )\ 0
Moreover, at the strong resonance, a disturbance along the gen- 00 0 X\

eralized eigenvector can excite the eigenvector mode (but not
vice versa). We expect that qualitatively similar mode coupling/feak resonance is a codimension 6 event. Thus, we do not ex-
effects can occur for systems that pass near strong resonangect weak resonance to occur in a generic set of equations such



DOBSONet al.: IS STRONG MODAL RESONANCE A PRECURSOR TO POWER SYSTEM OSCILLATIONS? 345

as those that might be expected when modeling a power syste
with no special structure, even if two parameters were varied 4|
However, weak resonance can occur with some special struc
ture: For example, consider two power systems which are de 2
coupled from each other. The eigenvalues of the entire syster |
belong to either one power system or the other. If parameter
vary so that an eigenvalue of one power system coincides witl 1}
an eigenvalue of the other power system, then these two eiget
values will not interact as parameters vary and this is weak res *°[
onance. Another example of special structure which can yielc | . + -
weak resonance is when a power system study is done with * *
bilaterally symmetric power system model. 5 o8 o8 w04 oz o o0z o3 o8 o5

At weak resonance, there is ambiguity in associating eigen- o
vectors with one of the modes that is resonating becadd® 7~ Variationink andy near strong resonancei= A, + = yi.
any nontrivial combination of the eigenvectors is also an
eigenvector. Moreover, the eigenvectors and eigenvalues ar®1. PREDICTING EIGENVALUE MOVEMENT NEAR STRONG
ill conditioned in that some parameter changes cause sudden RESONANCE

changes in the eigenvectors and eigenvalues. In particular, therEet A1 be a lightly damped system eigenvalue. Formulas to

are strong resonances arbitrarily close to a weak resonang nyte the first order eigenvalue sensitivity, /9p with re-

[18]. S . )
) pect to changes in any parameteare very useful in deter-
Suppose that two modes which are local to separate area?nﬂ%ing the robustness of, and in detecting whethex; is a

the power system and thus decpupled encounter a weak r&iftical mode that can readily become unstable as parameters
nance. Then, the modes remain decoupled at the weak reﬁia

hii "™

E | disturb fined i ange [6], [22]. (For parameters such as generator redispatch,
hance. Forexample, a Isturbance confined to one areawill o effect of the equilibrium movement must be accounted for
excite the local mode of that area.

by Hessian terms in the formulas computing these sensitivities.)

Now suppose that eigenvalugsandX; are close to a strong
resonance. Then, the nonlinear and rapidly changing movement
of the eigenvalues near the resonance will méke/dp and

. L . . OXo/0pyield very poor estimates of the eigenvalue movements
The analysis of genericity in Sections V-C and V-D raiseg any sizable changes in This section shows how to ob-

the question of the e_xtent to Wh“'Ch pr actical pow?r SYStin better estimates by exploiting the structure near strong res-
models are nongeneric or have “special structure.” It see

clear that special structure such as bilateral symmetry or perfeckn irr;portant general observation is thand . of (4) can

d_ecoupllng d“? to the power sys_tem areas being COmpletsg(calcuIated from numerical eigenvalue results. Inversion of (5)
disconnected is not expected in practical power syste

models. Moreover, a sensible initial working assumption is that
practical power system models are generic. However, it is a pos- A=+ \2)/2 8)
12

E. Typical Resonance in Power System Models

sibility that in some cases there could be sufficient decoupling
between power system areas to make the areas approximately
decoupled. In these cases the power system could pass near to
a weak resonance. This would also imply passing near a strohig the average eigenvalue apdiescribes the detuning from
resonance, since there are strong resonances arbitrarily cl%&Ct strong resonance.

to a weak resonance. However, not all perturbations of theFig. 7 shows howA and ;. computed from (9) vary for the
weak resonance involve the strong resonance and, moreo@eUs case shown in Fig. 5. The approximately linear variation
it is possible that the strong resonance could be obsern@dh and . in Fig. 7 motivates the following method of esti-
only in a detailed analysis whereas the weak resonance wolllating eigenvalue movement. The sensitivity\o&nd . with
determine the approximate overall behavior. More work F§spect top can be calculated from the sensitivities af and
needed to clarify whether a weak resonance is likely to occdi:

in a practical power system model and what would be expected

=M1 = A2)?/4 ©)

to be observed near a weak resonance. oA _1 <% + %) (10)
Another consideration is the genericity of the parameter 9 2\ 9p 9p

changes being considered. Parameter changes such as power O A =X (O O

redispatch strongly affect the equilibrium and are expected to 8_p T <8_p - 8—p> . (11)

generically change the power system linearization. On the other

hand, it is not clear whether changing a control system géhiirst order estimates of the changes\iand;. are made using
corresponds to a generic parameter change. Control syst€tfy and (11) and then estimates of the eigenvalue movements
are designed to affect particular modes and changes in cona@ obtained using (5). Fig. 8 shows a good match between the
gains often have little or no effect on the equilibrium. estimated and actual eigenvalue movements.
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4

how power system modes which are initially associated with

. ’ different power system areas become coupled. It will be inter-

. . | esting to try to verify these explanations in power system exam-

) | ples such as the 0.7 Hz western North American power system

* . ] modes in which some sort of resonance has long been suspected

] of causing “anomalous” results.

wl . - Is strong modal resonance a precursor to power systems o0s-

b o2 8 N ’ | cillations? The theoretical and simulation evidence in this paper

. ‘ ] strongly suggests that a strong resonance can be a precursor to

a . * " J oscillations and that nearby strong resonance is a possible ex-
planation whenever electric power systems have closely spaced

Fig. 8. Predicting eigenvalue movement near resonadee:=predicted modes interacting.
eigenvaluesy =actual eigenvalues.

a8
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VII. DiscussioON ANDCONCLUSION APPENDIX A

. GENERIC STRUCTURE NEARRESONANCE
This paper demonstrates strong resonance as a precursor to

oscillatory instability in 3- and 9-bus power systems as power This appendix describes the generic structure of two modes of
dispatch is varied. Mathematical analysis confirms the observedeneral power system model near resonance using the matrix
gualitative features of the eigenvalue and eigenvector movemdaformation theory explained in Wiggins [24] and Arnold [2].
near strong resonance. Near strong resonance, eigenvalues mowe begin with a general dynamic power system model and
quickly and turn through approximately @0rhus, if the eigen- obtain a parameterized Jacobiéfw). Assume that the power
values are initially approaching each other in frequency, theystem is modeled by parameterized differential-algebraic equa-
will quickly separate in damping after the resonance. One tibns which are analytic in the state and the parametezsR?.
these eigenvalues can cross the imaginary axis and cause arfragher, suppose that the derivative of the algebraic equations
cillation. This new mechanism for power—system oscillationsith respect to the algebraic variables is nonsingular at the equi-
can be seen as a generalization of Kwatny’s flutter instability 6brium. Then, we can locally solve the algebraic equations for
Hamiltonian power system models [14], [15] to a general pow#hte algebraic variables via the implicit function theorem and
system model. obtain analytic differential equations in a neighborhood of the
The new mechanism for power system oscillations requireguilibrium. Suppose that the Jacobian of the differential equa-
some change of perspective: instead of only examining ttiens at the equilibrium is nonsingular. Then the equilibrium is
damping of a single mode, one must also consider the possiranalytic function of the parameters and evaluating the Jaco-
bility that two modes interact near a strong resonance to caudmsan at the equilibrium yields a real parameterized maftix).
the oscillations. If two modes do interact in this way, thefithe Jacobia/(«) is an analytic function of the parametets
attempting to explain and predict the eigenvalue movementsome open sdt.
or attempting to damp the oscillation by only examining the Suppose that atvt = «9 € U, exactly two complex
mode that crosses the imaginary axis can easily fail. The neigenvalues coincide at, = o¢ + jwo, Wherew, # 0.
mechanism does not preclude the possibility of a single isolatiédollows that the complex conjugates of these eigenvalues
mode changing in damping as a cause of oscillations; rathalso coincide at\fj = oo — jwo. We are interested in the
the new mechanism points out an alternative way in which tleggenstructure of («) for « near toayg. Since the eigenvalues
interaction of two modes causes one of the modes to reduceois./(«) are continuous functions ofy, by shrinking the
damping and become unstable. neighborhood’ as necessary, the eigenvalues can be expressed
With the notable exceptions of the Hamiltonian work o&s functionsi;(«), Az(a), Aj(a), Aj(e) for « € U with
Kwatny [14], [15], the transfer function identification work byA; (ap) = A2(ag) = Ao. Here,U is shrunk so thah; («) and
Trudnowskiet al. [20], and the recent work by Jones [12], the\s(«) lie inside a disk centered ok for « € U and that there
possibility of strong resonance of oscillatory modes seemsdte, counting algebraic multiplicity, exactly two eigenvalues in
have been neglected in electric power systems analysis. Hdhe disk fora € U.
ever, theory suggests that a typical power system model caiNow, we reduce the Jacobiahto a4 x 4 matrix M which
pass close to strong resonance as a parameter is varied andhthsithe eigenstructure corresponding to the four eigenvalues of
encountering strong resonance is more likely than encounterinterest. The projectio®(«) onto the four dimensional right
a weak resonance. More work is needed to determine wheth&yenspace spanned by the generalized right eigenvectors cor-
practical power systems have any special structure that cotddponding to\; («), A2(«x), Aj(«), A3(«) is an analytic func-
make approximate weak resonance more likely. Neverthelessn of « [3]. Also, the projection)(«) onto the corresponding
we do suggest that effects due to nearby strong resonancealg dimensional left eigenspace is an analytic functionxof
occur in practical power systems. Artificially symmetric powebefine M = QT JP. M(«) is an analytict x 4 matrix valued
system models may fail to give resonance results representafivection of the parametexs for o« € I/ C RP. M(«) has ex-
of practical power systems. actly the eigenstructure corresponding to the four eigenvalues of
As two eigenvalues approach strong resonance, the corvée) of interest. In particular) («o) has two complex eigen-
sponding eigenvectors also converge. This is one way to explaalues coinciding aky = o¢ + jwp.



DOBSONet al.: IS STRONG MODAL RESONANCE A PRECURSOR TO POWER SYSTEM OSCILLATIONS? 347

There are now two cases depending on wheldér,) is di-  where
agonalizable or not. In the diagonalizable, weak resonance case Al A=0+4jw
M () is similar to the matrix dia@\g, Ao, A§, A5) in Jordan Mo(A, ) = <N A) and = pr 4 .
canonical form. Arnold [2], section 6.30E shows that weak re$hes x 2 complex matrixMg: = A, + jA; is célled tr:e com-

onance is codimension 6 in real parameter space. plexification of M},. The two eigenvalues af/. are the two
eigenvalues of\{g with positive frequency. Note that, setting
w =0, Mc(A, 0)isinJordan canonical form and that for= 0

In the strong resonance cas£(ayo) is similar to the matrix and) = ), M. is the Jordan canonical form 8ff (ay).

A. Strong Resonance

MRy in real Jordan canonical form In terms of Mc(\, 1), the consequence of the miniversal de-
formation is that there exist complex analytic functions written,
Jo —wo 1 0 . .
with some abuse of notation, aé«), u(«), and a4 x 4 com-
Mo = wo oo 0 1 plex matrix valued coordinate transformati®pa(«) analytic in
0 0 oo —wo | « such that
0 0 Wo J0 M(a)
Me(Ma), pla 0
A miniversal deformation o/ g is Mz: R* — R*¢ given by = Tc(a)< (A, ule)) . )(Tc(a))_1
0 MEAa), p(@))
—w 1 0 for o in some neighborhoot; C U of ag. Also A(ap) = Ao
w o 0 and (o) = 0.
Mg(o, w, pir, pii) = b —pi o — (12) Thus, study of the eigenstructure bf(«) reduces to study

of the eigenstructure oM~ (A(«), u()). In particular, the
N eigenvalues oM (A (), u(a)) are the eigenvalues dff («)

This key result can be deduced from [24], [2]. The consequen\ﬁlgh positive frequency and a (generalized) right _eigenvgctor
of Mc(A(«), () corresponds to a (generalized) right

of the miniversal deformation is that there exist real analyti¢ AR )
functions written, with some abuse of notation gds:), w(«), eﬁ_er;]v_ect(_)(z_JI ’ t_;\i}[ ) Of Mi(o(a), w(@), pn(e), pif)),
fir(0), pi(a) and ad x 4 real matrix valued coordinate trans-"' ich is similar toM/{«).

formationTr(«) analytic in« such that B. Structure of Matrices neat (c)

M(a) = Tr(a)Mg(o(a), w(a), p(a), pi(a))(Trla))™" The miniversal deformation result above can be applied to
determine the structure of all regk4 matrices neak{ («o) by a
for & in some neighborhooll; C U of ag. That is, a matrix choice of the parameterization Leta € R'° be the entries of a
similar to M («) can be analytically parameterized via the foureal4 x 4 matrix. That is, we parameteriec 4 matrices by their
parameters, w, p,-, andy;. Also o(ag) = o9, w(an) = wo, own entries. Theny(a) = (p-(a), pui(a)) may be regarded
pr(co) = 0, andp; (o) = 0 so that, in particular as an analytic map: U; — R? wherelU; ¢ R'S. Sincep
can be computed from the matrix eigenvalues [see (9)] and the
eigenvalues oM r(o¢, wo, pir, pi) areco + jwo = /i + i

The eigenvalues ofMg(o, w, pr, 1) are o + jw =+ 1(Mg(o0, wo, iy 1)) = (piry f1i)
Vi + jpg. Itis convenient to shrink/; if necessary to ensure
that the eigenvalues oM p(o(w), w(a), pr(a), pi(c)) for
a € U, are never real. Then it follows, far € Uy, thatthe — u(Tr(c0)Mr(o0, wo, ey 1) (Tr(0)) ™) = (e, 1)

eigenvalues ofMg(o(a), w(a), pr(a), pi(a)) coincide iff  \yhich implies, using (13), that is regular neat/ (o). There-
Nr(of) = m(a_) =0. ] ] forel’ = ;~1((0, 0)) is an analytic codimension 2 submanifold
It is convenient to also express this result interms 2ba2 ¢ the reald x 4 matrices neah (). T'is the set of real x 4
complex matrix describing the two eigenvalues with positivg,airices neait () which are similar taVlz (o, w, 0, 0) for
frequency. Permuting the second and third basis elements yielgdshe values of andw.
a matrix M7, similar to Mg Every matrix N in U is similar to Mg(c(N), w(N),
pr(N), 1;(N)) and the eigenvalues oN and Mg(o(N),
W(N), pr(N), /Zi(N)) are  o(N) + Jw(N) =+

M(Oéo) = TR(Oéo)MR(Oo, wo, 0, 0)(TR(040))_1. (13)

and

o 1l —w 0

Mo, w, jiry i) = P 0 =i =W Ar =4 Vi (N)+ ju;(N). SinceU; is assumed to be shrunk so
R B w 0 o 1 A, A, that these eigenvalues are never redl, has coincident
wow e o eigenvalues iffy,.(N) = p;(N) = 0. Hencel is the set of

matrices inlU; which have a coincident complex conjugate
Applying a complex coordinate change Ad;, gives a4 x 4 pair eigenvalues away from the real axis. Moreover, each
complex matrix matrix inI" is not diagonalizable. Thus is the matrices i/
. o with strong resonance and is a submanifold of codimension
A — <I2 ﬂ2> v <I2 JI2> B <MC 0 ) 2. A generic two parameter system of differential equations
S L, —jl, R L, —jb, - 0 M will have Jacobians which are diagonalizable except at isolated
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points at which strong resonance occurs (see the first corollaryThe network data are given in [17, Table 7.2]. Other param-
in Arnold [2, chapter 6, section 30E]). eters are as follows. All data are in per unit except that time
constants are in seconds.
APPENDIX B

POWER SYSTEM MODELS Machine Data

A. 3-bus System Parameter busl bus2 bus3
The dynamic model for both generators consists of a T, 8.96 8.5  3.27
fourth-order synchronous machine (angle, speed, field flux, .
L . o T, 0.31 1.24 0.31
one damper winding) with an IEEE type | excitation system (f/
(third order), and a first-order model each for the turbines, T30 0.05  0.037 0.032
boilers, and governors. The machine equations are in [17, T(;g 0.05 0.074 0.079
(6.110_—6.116), (4.98), (4.99), (6.118) and (6.121)]. The limits H 9964 647 5.047
on exciter voltagd’r and the steam valv€sy are neglected.
All data is in per unit except that time constants are in seconds. Trw 0 0 0
Xy 0.146 1.75 2.201
3-bus power system data X4 0.0969 1.72 2112
Generator Exciter Gov/Turbine X} 0.0608 0.427 0.556
T =5.33 Ki=500  Tgry =100 X! 0.0608 0.65 0.773
T),=0593  T4=002  Kyp=026 X=X/ 005 0275 0327
H = 2.832 Kg=1.0 Teg =05 X 0.026 0.22 0.246
Trw =0 Tr =0.78 Tsy =0.2 Saa 0.898 0911 0.825
Xy = 2442 Kr =0.01 Ry =0.05 San 9.610 8.248 2.847
X, =2421 Tr =12 ws = 1207 rad/s
X =0.830 Sg(Efq) = 0.397¢0-09Eq Exciter Data for buses, 2, 3
X{I = 1.007 Spa = 25484, Sgpp = 0.5884
R, = 0.003 Th Ky Tsa Kg Tg Krp 1TF
Load Line 1—2 Line 2—3 0 200 02 1.0 0.314 0.063 0.35
Pr=10 R =0.042 R =10.031
Load Data
Qr =03 X =0.168 X =0.126
B—2x00l B=2x0.008 Parameters busl bus2 bus5 bus6é bus8
Pr, 1.80 050 025 025 1.0

The generator dispatch is controlled by a paramatsvhich
specifies the proportion of power specified at the governors at QL

buses 1 and 350 th&t; = aPetorar @NdFes = (1 — ) Petotal-  pus 1 has a constant power load. buses 2, 5, 6, 8 have real power

(Petotar i determined when the equilibrium equations amgads of 40% constant current and 60% constant admittance and
= .
solved.) The base case has= 0.5 and the results are producedeactive power loads of 50% constant current and 50% constant

0265 0 0075 0.075 0.35

by decreasing to 0.1 in steps 0f-0.01. admittance. Base MVA is 100 and the system frequency is 60
Hz. bus voltage settings arel = 1.02, v2 = 0.99, v3 =
B. 9-bus System 1.005.

The overall form of the 9-bus model is that of the western
North American power system shown in [17, Fig. 7.4], except ACKNOWLEDGMENT

that PQ Ioads_ are added at bUS?S 1 and 2. The generators_ e authors would like to thank G. Rogers for advice about
round rotor with IEEE type 1 exciters. The generator dynamic

equations are consistent with [17, (6.173) to (6.181)]. Tr%ennceer?r:ofznrgi(r)]detlﬁlr;g Zn(lrlg l;] or;(;s rzr;]?as. Andersson for assis-
generator algebraic equations are consistent with [17, (6.186), g pap y =€y '
(6.187) and (6.188)]. The saturation function relations are
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