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IS STRONG MODAL RESONANCE A

PRECURSOR TO POWER SYSTEM

OSCILLATIONS?
Ian Dobson, Jianfeng Zhang, Scott Greene, Henrik Engdahl, Peter W. Sauer

Abstract— We suggest a new mechanism for interarea electric
power system oscillations in which two oscillatory modes interact
near a strong resonance to cause one of the modes to subsequently
become unstable. The possibility of this mechanism for oscilla-
tions is shown by theory and computational examples. Theory
suggests that passing near strong resonance can be expected in
general power system models. The mechanism for oscillations
is illustrated in 3 and 9 bus examples with detailed generator
models.

Index Terms— electric power systems, stability, oscillations,
sensitivity, resonance, Hopf bifurcation

I. INTRODUCTION

Power transactions are increasing in volume and variety

in restructured electric power systems because of the large

amounts of money to be made in exploiting geographic

differences in power prices. Restructured power systems are

expected to be operated at a greater variety of operating points

and closer to their operating constraints. One operational con-

straint which already limits transactions under some conditions

is the onset of low frequency interarea oscillations [4], [10],

[11], [16].

We consider how changes in power system parameters

could cause low frequency oscillations. For example, param-

eter changes such as bulk power transactions or generator

redispatch change the power system equilibrium and hence

change the system modes and possibly cause oscillations.

The main contribution of the paper is to suggest, analyze

and illustrate a mathematical mechanism for low frequency

oscillations. Describing mechanisms which cause oscillations

is an essential step in developing sound methods of operating

the power system up to but not at the onset of oscillations.
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The power system linearization and its modes vary as power

system parameters change. Damped oscillatory modes can

move close together and interact in such a way that one of

the modes subsequently becomes unstable. An ideal version of

this phenomenon occurs when two damped oscillatory modes

coincide exactly. That is, the power system linearization has

two conjugate complex pairs of eigenvalues which coincide

in both frequency and damping. This coincidence is called

a resonance, or, especially in the context of Hamiltonian sys-

tems, a 1:1 resonance. If the linearization is not diagonalizable

at the resonance, the resonance is called a strong resonance

[18]. Otherwise, if the linearization is diagonalizable at the

resonance, the resonance is called a weak resonance. Here we

are most interested in strong resonance. At a strong resonance,

the modes typically become extremely sensitive to parameter

variations and the direction of movement of the eigenvalues

turns through a right angle. For example, an eigenvalue that

changes in frequency before the resonance can change in

damping after the resonance and become oscillatory unstable

as the damping changes through zero. The strong resonance

is a precursor to the oscillatory instability in the sense that

the resonance causes the eigenvalues to change the size and

direction of their movement in such a way as to produce

instability.

In practice the power system will not experience an exact

strong resonance, but will pass close to such a resonance and

the qualitative effects will be similar: the eigenvalues will

move quickly and change direction as they interact and this

can lead to oscillatory instability. Note that we are describing

how a linearization of the power system model changes as

a generator redispatch changes the equilibrium at which the

linearization is evaluated.

Section II reviews previous work. Section III illustrates

oscillatory instability caused by strong resonance with param-

eterized matrices. Computational results showing oscillatory

instability caused by strong resonance in 3 and 9 bus power

system models are presented in Section IV. Section V de-

scribes the general structure of strong resonance and relates

this to what can be expected to be observed in general power

system models. A method to predict eigenvalue movement

near strong resonance is presented in section VI and the paper

concludes in section VII. This paper is an improved version

of the conference paper [7].
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II. REVIEW OF PREVIOUS WORK

Kwatny [14], [15] studies the flutter instability in power

system models with Hamiltonian structure. A stable equilib-

rium of a Hamiltonian power system model necessarily has

all eigenvalues on the imaginary axis. One generic way for

stability to be lost as a parameter varies is the flutter instability,

or Hamiltonian Hopf bifurcation. In the flutter instability, two

modes move along the imaginary axis, coalesce in an exact

strong resonance, and split at right angles to move into the

right and left halves of the complex plane. The Hamiltonian

power system model in [14] represents electromechanical

mode phenomena with simple swing models for the generators.

Kwatny [14] gives a 3 bus example of the flutter instability

and emphasizes that the flutter instability is generic in one

parameter Hamiltonian systems. It is also possible to add

uniform damping to the conservative model in order to shift

the Hamiltonian eigenvalue locus a fixed amount leftwards in

the complex plane [15]. Then two eigenvalues (necessarily of

the same damping) approach each other in frequency, coalesce

in an exact strong resonance and then split apart in damping.

One of these eigenvalues can then cross the imaginary axis

in a Hopf bifurcation to cause an oscillation. This is clearly

a special case of strong resonance causing an oscillation. The

Hamiltonian plus uniform damping model structure constrains

the eigenvalues to move either vertically along the line of

constant damping or horizontally and causes the resonance

to be exact.

Van Ness [23] analyzes a 1976 incident of 1 Hz oscillations

at Powerton station with a 60 machine model of the midwest-

ern American power system with 9 machines represented in

detail. The paper seems successful in reproducing the essential

features of the incident by eigenanalysis of the model. Figure

7 of [23] examines the effect of a variation of power and

excitation at Powerton unit 6. The eigenvector associated with

a dominant eigenvalue shows significant changes near the

instability that are attributed to a resonant interaction with

another nearby mode. Movement in the real part of close

eigenvalues when the excitation is lowered ‘seems to be due

to a coupling effect which has been observed in the model’.

Unfortunately the data is sparse; only one change in each of the

power or excitation is presented and firm conclusions about the

nature of the resonant interaction cannot be made. However,

the features shared between the account of the eigenanalysis

of [23] and strong resonance are suggestive.

Klein and Rogers et al. at Ontario Hydro [13] analyze

local modes and an interarea mode in a symmetric power

system model with 2 areas and 4 machines. The symmetry

is bilateral: each of the 2 areas has the same machines

and transmission lines. However, the base case is a stressed

case with area 1 exporting power to area 2 over a single

weak tie line. The two local modes have eigenvalues that

are practically equal, and each of the computed local modes

has substantial components across the entire system. A small

decrease in the machine inertias in area 2 causes the local

modes to change substantially to have significant components

only in their respective areas. Klein and Rogers attribute these

results to the nonuniqueness of eigenvectors associated with a

weak resonance. Although similar eigenvector changes could

be found near a strong resonance, one might argue that a

weak resonance could be expected here because of the high

degree of system symmetry. (A perfect bilateral symmetry

would cause a weak resonance and exclude strong resonance

between symmetric modes.) We do not expect perfect bilateral

symmetry in a practical power system. A perfect bilateral

symmetry in a power system may require symmetry of both

the network and the operating point: The 4 bus computational

example in the thesis of Jones [12] shows a strong resonance

in a power system with bilateral symmetry in the network but

an asymmetric operating condition.

Hamdan [9] studies the conditioning of the eigenvalue

and eigenvectors of a system very similar to that of [13].

The eigenvectors become ill conditioned near resonance and

singular value measurements of the proximity to a weak

resonance (‘sep’ function) suggest that the system does pass

near a weak resonance.

Klein and Rogers et al. [13] also discuss the modes near

0.7 Hz of the western North American power system. The

Kemano generating unit in British Columbia can have high

participation not only in a local mode of 0.77 Hz but also

in modes involving the Southwest United States of 0.74 and

0.76 Hz. Klein and Rogers regard this modal interaction

as unusual, distinguish it from the phenomenon observed

in their symmetric power system model and conclude that

‘Oscillations in one part of the system can excite units in

another part of the system due to resonance’. Mansour [21]

shows large oscillations at Kemano due to disturbances in

the the southwestern United States. It would be interesting

to determine if this modal interaction can be explained by a

nearby strong resonance.

Trudnowski, Johnson, and Hauer [20] use a strong reso-

nance assumption to improve Prony analysis identification of

transfer functions from noisy ringdown data. Closely spaced

poles with large residues of nearly opposite sign are replaced

by two poles in an exact strong resonance at the average of

the previous pole positions. Trudnowski, Johnson, and Hauer

show that this improves the estimates of the pole positions in

a 27 bus, 17 generator example which captures some features

of the western North American power system. This result is

supportive of the occurrence of strong resonance in power

systems.

DeMarco [5] describes how increased loading of tie lines

can cause a low frequency mode to decrease in frequency

until the complex conjugate eigenvalues coalesce at the real

axis and then split along the real axis so that one eigenvalue

passes through the origin and steady state stability is lost in

a collapse. This strong resonance of two real eigenvalues is

sometimes called a node-focus point or a critical damping of

the two modes. DeMarco demonstrates the phenomenon in a

14 bus system. Ajjarapu [1] also describes this phenomena and

demonstrates it in a 3 bus system. The phenomenon is strong

resonance of real eigenvalues as a precursor to steady state

instability and is clearly analogous to strong resonance in the

complex plane causing oscillatory loss of stability.

There is a large amount of very useful previous work

addressing the tuning of control system gains to avoid os-
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cillations which we do not attempt to review here.

The strong resonance and its implications for stability is

known in mechanics. Seyranian [18] gives a perturbation

analysis of eigenvalue movement caused by parameter changes

near both strong and weak resonance. Of particular interest is

the analysis showing how passage through a weak resonance

can be perturbed to obtain strong resonances. Seyranian [19]

considers strong resonance of a parameterized linear oscilla-

tory system. The eigenvalue movements near resonance are

shown to be hyperbolas to first order and a procedure for

calculating the hyperbolas from the eigenstructure is given.

The role of the resonance as a precursor to instability and

in altering which mode goes unstable is described and two

applications in mechanics are presented.

Recent work in the thesis of Jones [12], building on the

conference version of this paper [7], advances the compu-

tational examples of strong resonance. Jones shows strong

resonance near 0.7 Hz of two well damped electromechan-

ical modes of a 19 machine dynamic model of the western

North American power system. Since both modes are well

damped, no oscillatory loss of stability is caused. The results

confirm the approximate coincidence of mode shapes near the

strong resonance and the predicted effects of perturbing the

resonance.

III. ILLUSTRATION OF STRONG RESONANCE

This tutorial section illustrates strong resonance and near

resonance in complex eigenvalues of parameterized matrices.

-3 -2 -1

1

2

3

Fig. 1. Two modes of matrix M1 encountering strong resonance

Consider the matrix M1 parameterized by the real number

α:

M1 =







−1 + 2 j 1 + j 0 0
α −1 + 2 j 0 0
0 0 −1− 2 j 1− j
0 0 α −1− 2 j







M1 is a complex matrix, but it is structured to be similar to

the real matrix






−1 1 2 1
α −1 0 2

−2 −1 −1 1
0 −2 α −1







(note that the 2×2 submatrices of M1 are complex conjugate).

At α = −2, the eigenvalues of M1 are −1.64 ± 3.55j and

−0.36± 0.45j. As α varies from −2 to 2, two of the eigen-

values of M1 vary as shown in Figure 1 (these eigenvalues are

−1 + 2 j ± √
1 + j

√
α). Each eigenvalue shown in Figure 1

has a complex conjugate which moves correspondingly below

the real axis. At α = 0, the eigenvalues coincide at the

strong resonance at −1 + 2j. M1 is not diagonalizable at

the resonance. As α increases through zero, the eigenvalues

change direction by a right angle. The eigenvalue movement

is fast near the resonance; indeed, exactly at the resonance

the eigenvalues are infinitely sensitive to parameter variation.

Note how one of the eigenvalues becomes unstable after the

resonance.
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3
(a)M2
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1

2

3
(b)M3

Fig. 2. Two modes of matrices M2 and M3 moving near strong resonance

Figure 1 is not typical because an exact strong resonance

is encountered. It is more typical to come close to strong

resonance as the parameter is varied. Consider a matrix M2

which is a perturbation of matrix M1:

M2 =M1 +







0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0






(1)

The eigenvalues of M2 vary as shown in Figure 2(a) as α
varies from −2 to 2. Note how the eigenvalues come close

together and quickly turn approximately through a right angle.

There is a marked effect of coming close to the resonance.

A different way to perturb M1 is the matrix

M3 =M1 +







0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 −1






(2)

The eigenvalues of M3 vary as shown in Figure 2(b) as α
varies from −2 to 2. Both the eigenvalue movements in Figure

2 are close to the eigenvalue movement in Figure 1, but

a different eigenvalue becomes unstable in Figure 2(a) and

Figure 2(b).

IV. POWER SYSTEM COMPUTATIONAL RESULTS

This section shows examples of 3 bus and 9 bus power

system models passing near strong resonance as generator

power is redispatched. In both cases, the modal interaction

near strong resonance leads to oscillatory instability. The 3

bus results first appeared in [8].
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Fig. 3. Three bus power system

A. 3 bus system

The 3 bus system shown in Figure 3 consists of generators

at bus 1 and bus 3 and a constant power load at bus 2. The

generator models are tenth order and the system parameters are

reported in Appendix B. As the generator dispatch is varied to

increase the power supplied by bus 3, two damped complex

eigenvalues vary as shown in Figure 4(a). The eigenvalues

are initially at −0.4 ± 8.3j and −0.9 ± 4.3j and are stable.

As the power supplied by bus 3 increases, the two eigenvalues

approach one another, interact, and then one of the eigenvalues

crosses the imaginary axis and becomes unstable.

-2 -1 1

5

6

7

8(c)V  =1.11
ref

-2 -1 1

5

6

7

8(b)V  =1.03
ref

-2 -1 1

5

6

7

8(a)V  =1.07
ref

frequency
(rad/s)

damping (/s)

Fig. 4. 3 bus eigenvalues as dispatch varies

The case shown in Figure 4(a) is adjusted to show the

eigenvalues coming close together and has Vref = 1.07, where

Vref is the voltage reference set point of the generators at

buses 1 and 3. Rerunning the case for decreased and increased

Vref is shown in Figures 4(b) and 4(c). Figures 4(b) and 4(c)

show typical perturbations of the strong resonance. Observe

that if one attempts to stabilize the unstable eigenvalue of

Figure 4(b) by increasing Vref , then this eigenvalue is indeed

stabilized, but the other eigenvalue becomes unstable as shown

in Figure 4(c). This shows the importance of examining

both modes when trying to stabilize the system near strong

resonance.

B. 9 bus system

The form of the 9 bus system is based on the western North

American power system from the text of Sauer and Pai [17].

There are 3 generators with 2 axis models and IEEE Type I

exciters. More details may be found in Appendix B. Figure 5

shows the eigenvalue movement when real power generation

at bus 2 is varied from 1.5 pu to 2.10 pu in steps of 0.05. Real

power generation at bus 3 is fixed at 1.5 pu.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0
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2

3

4
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6

7

8

 

Fig. 5. 9 bus eigenvalues as dispatch varies

The eigenvalues pass near resonance and then one of

the eigenvalues becomes oscillatory unstable. Note that the

eigenvalues initially move together by a change mostly in

frequency. It is the strong resonance which transforms this

movement into a change in damping and hence instability.

The eigenvalues move quickly near the resonance.

V. STRUCTURE NEAR RESONANCE AND GENERICITY

This section describes in general how two oscillatory modes

of the Jacobian matrix vary when they are near a strong or

weak resonance and the genericity of these resonances. The

detailed mathematics to support all these results is presented

in Appendix A.

A. Strong resonance

Near strong resonance the Jacobian is similar to a matrix

which includes a 4 × 4 submatrix M ′

C describing the modes

of interest:

M ′

C =







λ 1 0 0
µ λ 0 0
0 0 λ∗ 1
0 0 µ∗ λ∗






=

(

MC 0
0 M∗

C

)

(3)
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Here λ and µ are complex numbers which are functions of

the power system parameters. The eigenvalues of M ′

C are the

same as the eigenvalues of the Jacobian corresponding to the

two oscillatory modes of interest.

The behavior of M ′

C is governed by the submatrix

MC =

(

λ 1
µ λ

)

(4)

The eigenvalues of MC are

λ1 = λ+
√
µ and λ2 = λ−√

µ (5)

Therefore the eigenvalues of M ′

C are

λ±√
µ and (λ±√

µ)∗

and these are the eigenvalues of the Jacobian corresponding

to the modes of interest. The idea is to study these modes by

examining the eigenvalues and eigenvectors of MC .

The eigenvalues of MC coincide at λ when µ = 0 and this

is the condition for strong resonance. MC is nondiagonalizable

at resonance (alternative terms for ‘nondiagonalizable’ are

‘nonsemisimple’ and ‘nondefective’). The sensitivity of these

eigenvalues to the real or imaginary part of µ is
±1

2
√
µ

, which

tends to infinity as µ tends to zero. As µ moves in the complex

plane on a smooth curve through 0 with nonzero speed, the

argument of
√
µ jumps by 90o so that the direction of the

eigenvalue movement changes by 90o.

The right and left eigenvectors of MC are
(

1
±√

µ

)

and (±√
µ , 1 )

At the strong resonance at µ = 0, the eigenvectors are in-

finitely sensitive to changes in µ, the right and left eigenvectors

are orthogonal, and there is a single right eigenvector together

with a generalized right eigenvector. As µ tends to zero and the

resonance is approached, the two right eigenvectors become

aligned and tend to the right eigenvector at µ = 0. Thus the

system modes approach each other as µ tends to zero. The

dependence of this approach on
√
µ shows that this approach

is initially slow and then very quick near µ = 0.

If the system is near strong resonance, then the following

are typical:

• The eigenvalues and eigenvectors are very sensitive to

parameter variations

• A general parameter variation causes the direction of

eigenvalue movement in the complex plane to turn

quickly through approximately a right angle.

• The right and left eigenvectors are nearly orthogonal.

• The right eigenvectors of the two modes are nearly

aligned. This implies that the pattern of oscillation of

the two modes is similar.

B. Mode coupling at strong resonance

We examine the time and frequency domain solutions at

strong resonance when µ = 0. Assume that λ = σ ± jω

with σ < 0. The time domain solutions to the linear dif-

ferential equations with matrix (3) are linear combinations

of teσt cosωt, teσt sinωt, eσt cosωt and eσt sinωt. Some

perturbations mainly excite the teσt cosωt and teσt sinωt
solutions and these perturbations will cause oscillations that

grow before exponentially decaying to zero. Figure 6 shows

the frequency domain description in block diagram form.

input along generalized

right eigenvectors

∨
1

s2− 2σs+ σ2 + ω2

>

output along

right

generalized

eigenvectors

input along

right

eigenvectors
>©+

∨
1

s2− 2σs+ σ2 + ω2

∨
output along

right eigenvectors

Fig. 6. Modes at strong resonance

Observe the input/output combination passing vertically

down the page in Figure 6 in which the output of the first

damped oscillator feeds the second damped oscillator. This

one-way mode coupling has interesting consequences for the

power system behavior.

Consider two modes which initially are local to separate

areas of the power system. The modes are initially decoupled

so that disturbances in one area will only affect the mode in

that area. Now suppose that parameters change so that the

two modes interact by encountering a strong resonance. As

the strong resonance is approached, the mode eigenvectors

will converge so that the modes are no longer confined to

their respective areas. Moreover, at the strong resonance, a

disturbance along the generalized eigenvector can excite the

eigenvector mode (but not vice versa). We expect that quali-

tatively similar mode coupling effects can occur for systems

that pass near strong resonance.

C. Genericity of strong resonance

The rarity of strong resonance can be examined using its

codimension [24], which is, roughly speaking, the number of

independent parameters that need to be varied to typically

encounter the resonance. The coincidence of two pairs of

complex eigenvalues of a matrix at λ = σ ± jω typically
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happens with Jordan canonical form






λ 1 0 0
0 λ 0 0
0 0 λ∗ 1
0 0 0 λ∗






(6)

A strong resonance of the form (6) without regard to the value

of λ occurs in the matrix (3) when the complex parameter

µ = 0. Since this requires both the real and imaginary part

of µ to be zero, this is a codimension 2 event. (On the other

hand, the occurrence of a strong resonance of the form (6) for

a particular value of λ = λ0 requires both λ = λ0 and µ = 0
and is a codimension 4 event.)

Thus strong resonance is a codimension 2 event and it can

be typically encountered when varying two parameters. Strong

resonance will not be typically encountered when varying

one parameter, but it is still possible to pass near to strong

resonance when varying one parameter.

D. Weak resonance

At a weak resonance of two complex modes, the Jacobian

is similar to a matrix which includes a 4× 4 submatrix






λ 0 0 0
0 λ 0 0
0 0 λ∗ 0
0 0 0 λ∗






(7)

Weak resonance is a codimension 6 event. Thus we do not

expect weak resonance to occur in a generic set of equations

such as those that might be expected when modeling a power

system with no special structure, even if two parameters were

varied. However, weak resonance can occur with some special

structure: For example, consider two power systems which

are decoupled from each other. The eigenvalues of the entire

system belong to either one power system or the other. If

parameters vary so that an eigenvalue of one power system

coincides with an eigenvalue of the other power system, then

these two eigenvalues will not interact as parameters vary and

this is weak resonance. Another example of special structure

which can yield weak resonance is when a power system study

is done with a bilaterally symmetric power system model.

At weak resonance, there is ambiguity in associating eigen-

vectors with one of the modes that is resonating because

any nontrivial combination of the eigenvectors is also an

eigenvector. Moreover, the eigenvectors and eigenvalues are

ill conditioned in that some parameter changes cause sudden

changes in the eigenvectors and eigenvalues. In particular,

there are strong resonances arbitrarily close to a weak res-

onance [18].

Suppose that two modes which are local to separate areas

of the power system and thus decoupled encounter a weak

resonance. Then the modes remain decoupled at the weak

resonance. For example, a disturbance confined to one area

will only excite the local mode of that area.

E. Typical resonance in power system models

The analysis of genericity in sections V-C and V-D raises

the question of the extent to which practical power system

models are non-generic or have ‘special structure’. It seems

clear that special structure such as bilateral symmetry or

perfect decoupling due to the power system areas being com-

pletely disconnected is not expected in practical power systems

models. Moreover, a sensible initial working assumption is

that practical power system models are generic. However, it

is a possibility that in some cases there could be sufficient

decoupling between power system areas to make the areas

approximately decoupled. In these cases the power system

could pass near to a weak resonance. This would also imply

passing near a strong resonance, since there are strong reso-

nances arbitrarily close to a weak resonance. However, not all

perturbations of the weak resonance involve the strong reso-

nance and, moreover, it is possible that the strong resonance

could be observed only in a detailed analysis whereas the weak

resonance would determine the approximate overall behavior.

More work is needed to clarify whether a weak resonance is

likely to occur in a practical power system model and what

would be expected to be observed near a weak resonance.

Another consideration is the genericity of the parameter

changes being considered. Parameter changes such as power

redispatch strongly affect the equilibrium and are expected

to generically change the power system linearization. On the

other hand, it is not clear whether changing a control system

gain corresponds to a generic parameter change. Control

systems are designed to affect particular modes and changes in

control gains often have little or no effect on the equilibrium.

VI. PREDICTING EIGENVALUE MOVEMENT NEAR STRONG

RESONANCE

Let λ1 be a lightly damped system eigenvalue. Formulas to

compute the first order eigenvalue sensitivity ∂λ1

∂p
with respect

to changes in any parameter p are very useful in determining

the robustness of λ1 and in detecting whether λ1 is a critical

mode that can readily become unstable as parameters change

[6], [22]. (For parameters such as generator redispatch, the

effect of the equilibrium movement must be accounted for by

Hessian terms in the formulas computing these sensitivities.)

Now suppose that eigenvalues λ1 and λ2 are close to a

strong resonance. Then the nonlinear and rapidly changing

movement of the eigenvalues near the resonance will make
∂λ1

∂p
and ∂λ2

∂p
yield very poor estimates of the eigenvalue

movements for any sizable changes in p. This section shows

how to obtain better estimates by exploiting the structure near

strong resonance.

An important general observation is that λ and µ of (4) can

be calculated from numerical eigenvalue results. Inversion of

(5) yields

λ = (λ1 + λ2)/2 (8)

µ = (λ1 − λ2)
2/4 (9)

λ is the average eigenvalue and µ describes the detuning from

exact strong resonance.

Figure 7 shows how λ and µ computed from (9) vary for

the 9 bus case shown in Figure 5. The approximately linear

variation of λ and µ in Figure 7 motivates the following

method of estimating eigenvalue movement. The sensitivity
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of λ and µ with respect to p can be calculated from the

sensitivities of λ1 and λ2:

∂λ

∂p
=

1

2

(

∂λ1
∂p

+
∂λ2
∂p

)

(10)

∂µ

∂p
=
λ1 − λ2

2

(

∂λ1
∂p

− ∂λ2
∂p

)

(11)

First order estimates of the changes in λ and µ are made using

(10) and (11) and then estimates of the eigenvalue movements

are obtained using (5). Figure 8 shows a good match between

the estimated and actual eigenvalue movements.
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Fig. 7. Variation in λ and µ near strong resonance; ∗ = λ, + = µ.
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Fig. 8. Predicting eigenvalue movement near resonance; +=predicted
eigenvalues, ∗=actual eigenvalues.

VII. DISCUSSION AND CONCLUSION

This paper demonstrates strong resonance as a precursor

to oscillatory instability in 3 and 9 bus power systems as

power dispatch is varied. Mathematical analysis confirms the

observed qualitative features of the eigenvalue and eigenvec-

tor movement near strong resonance. Near strong resonance,

eigenvalues move quickly and turn through approximately 90o.

Thus if the eigenvalues are initially approaching each other in

frequency, then they will quickly separate in damping after the

resonance. One of these eigenvalues can cross the imaginary

axis and cause an oscillation. This new mechanism for power

system oscillations can be seen as a generalization of Kwatny’s

flutter instability of Hamiltonian power system models [14],

[15] to a general power system model.

The new mechanism for power system oscillations requires

some change of perspective: instead of only examining the

damping of a single mode, one must also consider the possi-

bility that two modes interact near a strong resonance to cause

the oscillations. If two modes do interact in this way, then

attempting to explain and predict the eigenvalue movement

or attempting to damp the oscillation by only examining the

mode that crosses the imaginary axis can easily fail. The

new mechanism does not preclude the possibility of a single

isolated mode changing in damping as a cause of oscillations;

rather, the new mechanism points out an alternative way in

which the interaction of two modes causes one of the modes

to reduce its damping and become unstable.

With the notable exceptions of the Hamiltonian work of

Kwatny [14], [15], the transfer function identification work

by Trudnowski et al. [20], and the recent work by Jones [12],

the possibility of strong resonance of oscillatory modes seems

to have been neglected in electric power systems analysis.

However, theory suggests that a typical power system model

can pass close to strong resonance as a parameter is varied and

that encountering strong resonance is more likely than encoun-

tering a weak resonance. More work is needed to determine

whether practical power systems have any special structure

that could make approximate weak resonance more likely.

Nevertheless, we do suggest that effects due to nearby strong

resonance do occur in practical power systems. Artificially

symmetric power system models may fail to give resonance

results representative of practical power systems.

As two eigenvalues approach strong resonance, the corre-

sponding eigenvectors also converge. This is one way to ex-

plain how power system modes which are initially associated

with different power system areas become coupled. It will be

interesting to try to verify these explanations in power system

examples such as the 0.7 Hz western North American power

system modes in which some sort of resonance has long been

suspected of causing ‘anomalous’ results.

Is strong modal resonance a precursor to power systems

oscillations? The theoretical and simulation evidence in this

paper strongly suggests that a strong resonance can be a

precursor to oscillations and that nearby strong resonance is

a possible explanation whenever electric power systems have

closely spaced modes interacting.
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APPENDIX A: GENERIC STRUCTURE NEAR RESONANCE

This appendix describes the generic structure of two modes

of a general power system model near resonance using the

matrix deformation theory explained in Wiggins [24] and

Arnold [2].

We begin with a general dynamic power system model

and obtain a parameterized Jacobian J(α). Assume that

the power system is modeled by parameterized differential-

algebraic equations which are analytic in the state and the

parameters α ∈ Rp. Further suppose that the derivative of the

algebraic equations with respect to the algebraic variables is
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nonsingular at the equilibrium. Then we can locally solve the

algebraic equations for the algebraic variables via the implicit

function theorem and obtain analytic differential equations in

a neighborhood of the equilibrium. Suppose that the Jacobian

of the differential equations at the equilibrium is nonsingular.

Then the equilibrium is an analytic function of the parameters

and evaluating the Jacobian at the equilibrium yields a real

parameterized matrix J(α). The Jacobian J(α) is an analytic

function of the parameters α in some open set U .

Suppose that at α = α0 ∈ U , exactly two complex

eigenvalues coincide at λ0 = σ0 + jω0, where ω0 6= 0.

It follows that the complex conjugates of these eigenvalues

also coincide at λ∗0 = σ0 − jω0. We are interested in the

eigenstructure of J(α) for α near to α0. Since the eigen-

values of J(α) are continuous functions of α, by shrinking

the neighborhood U as necessary, the eigenvalues can be

expressed as functions λ1(α), λ2(α), λ
∗

1(α), λ
∗

2(α) for α ∈ U
with λ1(α0) = λ2(α0) = λ0. Here U is shrunk so that

λ1(α) and λ2(α) lie inside a disk centered on λ0 for α ∈ U
and that there are, counting algebraic multiplicity, exactly two

eigenvalues in the disk for α ∈ U .

Now we reduce the Jacobian J to a 4× 4 matrix M which

has the eigenstructure corresponding to the four eigenvalues

of interest. The projection P (α) onto the four dimensional

right eigenspace spanned by the generalized right eigenvectors

corresponding to λ1(α), λ2(α), λ
∗

1(α), λ
∗

2(α) is an analytic

function of α [3]. Also the projection Q(α) onto the cor-

responding four dimensional left eigenspace is an analytic

function of α. Define M = QTJP . M(α) is an analytic 4×4
matrix valued function of the parameters α for α ∈ U ⊂ Rp.

M(α) has exactly the eigenstructure corresponding to the four

eigenvalues of J(α) of interest. In particular, M(α0) has two

complex eigenvalues coinciding at λ0 = σ0 + jω0.

There are now two cases depending on whether M(α0) is

diagonalizable or not. In the diagonalizable, weak resonance

case M(α0) is similar to the matrix diag(λ0, λ0, λ
∗

0, λ
∗

0) in

Jordan canonical form. Arnold [2], section 6.30E shows that

weak resonance is codimension 6 in real parameter space.

A.1 Strong resonance.

In the strong resonance case M(α0) is similar to the matrix

MR0 in real Jordan canonical form

MR0 =







σ0 −ω0 1 0
ω0 σ0 0 1
0 0 σ0 −ω0

0 0 ω0 σ0







A miniversal deformation of MR0 is MR : R4 → R16 given

by

MR(σ, ω, µr, µi) =







σ −ω 1 0
ω σ 0 1
µr −µi σ −ω
µi µr ω σ






(12)

This key result can be deduced from [24], [2]. The conse-

quence of the miniversal deformation is that there exist real

analytic functions written, with some abuse of notation, as

σ(α), ω(α), µr(α), µi(α) and a 4 × 4 real matrix valued

coordinate transformation TR(α) analytic in α such that

M(α) = TR(α)MR(σ(α), ω(α), µr(α), µi(α)) (TR(α))
−1

for α in some neighborhood U1 ⊂ U of α0. That is, a matrix

similar to M(α) can be analytically parameterized via the four

parameters σ, ω, µr, and µi. Also σ(α0) = σ0, ω(α0) = ω0,

µr(α0) = 0, and µi(α0) = 0 so that, in particular,

M(α0) = TR(α0)MR(σ0, ω0, 0, 0) (TR(α0))
−1 (13)

The eigenvalues of MR(σ, ω, µr, µi) are σ + jω ±√
µr + jµi. It is convenient to shrink U1 if necessary to

ensure that the eigenvalues of MR(σ(α), ω(α), µr(α), µi(α))
for α ∈ U1 are never real. Then it follows, for α ∈ U1, that

the eigenvalues of MR(σ(α), ω(α), µr(α), µi(α)) coincide iff

µr(α) = µi(α) = 0.

It is convenient to also express this result in terms of a 2×2
complex matrix describing the two eigenvalues with positive

frequency. Permuting the second and third basis elements

yields a matrix M ′

R similar to MR:

M ′

R(σ, ω, µr , µi) =







σ 1 −ω 0
µr σ −µi −ω
ω 0 σ 1
µi ω µr σ






=

(

Ar −Ai

Ai Ar

)

Applying a complex coordinate change to M ′

R gives a 4 × 4
complex matrix

M ′

C =

(

I2 jI2
I2 −jI2

)

M ′

R

(

I2 jI2
I2 −jI2

)

−1

=

(

MC 0
0 M∗

C

)

where MC(λ, µ) =

(

λ 1
µ λ

)

and
λ = σ + jω
µ = µr + jµi

The 2 × 2 complex matrix MC = Ar + jAi is called the

complexification of M ′

R. The two eigenvalues of MC are the

two eigenvalues of MR with positive frequency. Note that,

setting µ = 0, MC(λ, 0) is in Jordan canonical form and that

for µ = 0 and λ = λ0, M ′

C is the Jordan canonical form of

M(α0).
In terms of MC(λ, µ), the consequence of the miniversal

deformation is that there exist complex analytic functions

written, with some abuse of notation, as λ(α), µ(α), and a

4×4 complex matrix valued coordinate transformation TC(α)
analytic in α such that

M(α) =

TC(α)

(

MC(λ(α), µ(α)) 0
0 M∗

C(λ(α), µ(α))

)

(TC(α))
−1

for α in some neighborhood U1 ⊂ U of α0. Also λ(α0) = λ0
and µ(α0) = 0.

Thus study of the eigenstructure of M(α) reduces to study

of the eigenstructure of MC(λ(α), µ(α)). In particular, the

eigenvalues of MC(λ(α), µ(α)) are the eigenvalues of M(α)
with positive frequency and a (generalized) right eigenvector

v of MC(λ(α), µ(α)) corresponds to a (generalized) right

eigenvector (vT ,−jvT )T of M ′

R(σ(α), ω(α), µr(α), µi(α)),
which is similar to M(α).
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A.2 Structure of matrices near M(α0).

The miniversal deformation result above can be applied to

determine the structure of all real 4×4 matrices nearM(α0) by

a choice of the parameterization α. Let α ∈ R16 be the entries

of a real 4×4 matrix. That is, we parameterize 4×4 matrices

by their own entries. Then µ(α) = (µr(α), µi(α)) may be

regarded as an analytic map µ : U1 → R2 where U1 ⊂ R16.

Since µ can be computed from the matrix eigenvalues (see

(9)) and the eigenvalues of MR(σ0, ω0, µr, µi) are σ0+ jω0±√
µr + jµi ,

µ
(

MR(σ0, ω0, µr, µi)
)

= (µr, µi) and

µ
(

TR(α0)MR(σ0, ω0, µr, µi)(TR(α0))
−1

)

= (µr, µi)

which implies, using (13), that µ is regular near M(α0).
Therefore Γ = µ−1((0, 0)) is an analytic codimension 2

submanifold of the real 4 × 4 matrices near M(α0). Γ is the

set of real 4 × 4 matrices near M(α0) which are similar to

MR(σ, ω, 0, 0) for some values of σ and ω.

Every matrix N in U1 is similar to

MR(σ(N), ω(N), µr(N), µi(N)) and the eigenvalues

of N and MR(σ(N), ω(N), µr(N), µi(N)) are

σ(N) + jω(N) ±
√

µr(N) + jµi(N). Since U1 is assumed

to be shrunk so that these eigenvalues are never real, N
has coincident eigenvalues iff µr(N) = µi(N) = 0. Hence

Γ is the set of matrices in U1 which have a coincident

complex conjugate pair eigenvalues away from the real axis.

Moreover, each matrix in Γ is not diagonalizable. Thus

Γ is the matrices in U1 with strong resonance and is a

submanifold of codimension 2. A generic two parameter

system of differential equations will have Jacobians which

are diagonalizable except at isolated points at which strong

resonance occurs (see the first corollary in Arnold [2] chapter

6, section 30E).

APPENDIX B: POWER SYSTEM MODELS

B.1 3 bus system

The dynamic model for both generators consists of a

fourth-order synchronous machine (angle, speed, field flux,

one damper winding) with an IEEE type I excitation system

(third order), and a first-order model each for the turbines,

boilers, and governors. The machine equations are (6.110–

6.116), (4.98), (4.99), (6.118) and (6.121) in [17]. The limits

on exciter voltage VR and the steam valve PSV are neglected.

All data is in per unit except that time constants are in seconds.

Three bus power system data

Generator Exciter Gov/Turbine

T ′

do = 5.33 KA = 50.0 TRH = 10.0
T ′

qo = 0.593 TA = 0.02 KHP = 0.26
H = 2.832 KE = 1.0 TCH = 0.5

TFW = 0 TE = 0.78 TSV = 0.2
Xd = 2.442 KF = 0.01 Rd = 0.05
Xq = 2.421 TF = 1.2 ωs = 120π rad/s

X ′

d = 0.830 SE(Efd) = 0.397 e0.09Efd

X ′

q = 1.007
Rs = 0.003

Load Line 1-2 Line 2-3

PL = 1.0 R = 0.042 R = 0.031
QL = 0.3 X = 0.168 X = 0.126

B = 2× 0.01 B = 2× 0.008

The generator dispatch is controlled by a parameter α which

specifies the proportion of power specified at the governors at

buses 1 and 3 so that Pc1 = αPctotal and Pc3 = (1−α)Pctotal.

(Pctotal is determined when the equilibrium equations are

solved.) The base case has α = 0.5 and the results are

produced by decreasing α to 0.1 in steps of −0.01.

B.2 9 bus system

The overall form of the 9 bus model is that of the western

North American power system shown in Figure 7.4 of [17],

except that PQ loads are added at buses one and two. The

generators are round rotor with IEEE Type 1 exciters. The gen-

erator dynamic equations are consistent with (6.173) to (6.181)

of [17]. The generator algebraic equations are consistent with

(6.186), (6.187) and (6.188) of [17]. The saturation function

relations are consistent with (6.189) to (6.193) of [17], with

Ssmi(|ψ′′|) =
{

0 if |ψ′′| ≤ SGA

SGB(|ψ′′| − SGA)
2 if |ψ′′| > SGA

SE(Efd) =

{

0 if Efd ≤ SEA

SEB(Efd − SEA)
2/Efd if Efd > SEA

The network data is given in Table 7.2 of [17]; other

parameters are as follows. All data is in per unit except that

time constants are in seconds.

Machine Data

Parameter bus1 bus2 bus3

T ′

do 8.96 8.5 3.27

T ′

qo 0.31 1.24 0.31

T ′′

do 0.05 0.037 0.032

T ′′

qo 0.05 0.074 0.079

H 22.64 6.47 5.047

TFW 0 0 0

Xd 0.146 1.75 2.201

Xq 0.0969 1.72 2.112

X
′

d 0.0608 0.427 0.556

X
′

q 0.0608 0.65 0.773

X
′′

d = X
′′

q 0.05 0.275 0.327

Xl 0.026 0.22 0.246

SGA 0.898 0.911 0.825

SGB 9.610 8.248 2.847
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Exciter Data for buses 1,2,3

SEA = 2.5484, SEB = 0.5884
TR KA TA KE TE KF TF
0 20.0 0.2 1.0 0.314 0.063 0.35

Load Data

Parameters bus1 bus2 bus5 bus6 bus8

PL 1.80 0.50 0.25 0.25 1.0

QL 0.265 0 0.075 0.075 0.35

Bus 1 has a constant power load. Buses 2, 5, 6, 8 have

real power loads of 40% constant current and 60% constant

admittance and reactive power loads of 50% constant current

and 50% constant admittance. Base MVA is 100 and the

system frequency is 60 Hz. Bus voltage settings are v1 =
1.02, v2 = 0.99, v3 = 1.005.
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