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Although the function is no longer convex, it seems to find
u(M,) reliably enough to greatly offset this disadvantage. In
cases where local instead of global maxima occur, the algorithm
simply reverts to (1).

The new method can easily be extended to the formulation of
[8] by using the dependencies previously shown. Let § €.% be
the scaling matrix obtained at a stationary point of the scaled
singular value in (1) and denote by Y, the corresponding right
singular vector. Then the optimal solution x* to (16) is

.Sy,
IS=tyll”

Replacing S and Y; with the relationships developed earlier and
carrying out the multiplication, it is easily seen that

0
Y2

ynl

Yn+1
Y21Yn+1
: an
Yn1¥n+1

Yon+1
Y21Y2n+1

Y1 ¥Yin-tn+1

Here, Y; has simply been scaled so that y,; = 1. As before, only
2(n — 1) free variables remain making the optimization process
much more efficient. Using the system of Example 1, the optimal
S~1Y, becomes

1 B 1 “
Yz 1.236
Y31 1.094
Ya 0.855 + 0.519i
STy, = | YaYar | = | 1.056 + 0.641i
Y31Ya 0.935 + 0.567i
Yn 0.355 + 0.935i
Ya¥n 0.438 + 1.155i
VY7 | 0.388 + 1.023; |
with corresponding
IM, x*|| = 8.25 = 5(DM,D").

V1. CONCLUSION

A new method that significantly reduces the number of opti-
mization variables required in the calculation of the structured
singular value for scalar or block structured uncertainties is
presented. This approach takes advantage of the structure of the
uncertainty matrix A to provide a reduction in the number of
free optimization variables. For the case of an uncertainty ma-
trix with #2 nonzero 1 X 1 blocks, we have shown that the
structured singular value may be computed with 2(n — 1) rather
than n? — 1 free variables. It should be noted, however, that for
this class of uncertainties the nonsimilarity scaling method of [2]
also requires only 2(n — 1) optimization variables over matrices
of dimension 7 X n (not n? X n?). Hence, nonsimilarity scaling
still offers the most efficient method of calculating w for this
uncertainty class.

Examples 2 and 3 illustrate how the new scaling technique
offers significant computational advantages for block structured
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uncertainties over previous methods by again reducing the num-
ber of optimization parameters. These reductions are also shown
to hold for the vector optimization approach developed in [8].

Recent work [11] has revealed that the results presented in
this note may also be used to derive explicit expressions for the
elements of the nonsimilarity scaling matrices in terms of the
similarity scaling variables and further research is proceeding to
remove the stationarity assumptions and to extend the results to
more general classes of uncertainties.
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Computing an Optimum Direction in Control Space
to Avoid Saddle Node Bifurcation and Voltage
Collapse in Electric Power Systems

Ian Dobson and Liming Lu

Abstract—This note computes an optimum direction of controls to
avoid power system voltage collapse. That is, given a load power forecast,
we compute the sensitivity with respect to controls of a load power
margin measuring proximity to voltage collapse. The computation is
simple enough to contribute to the practical planning and control of a
power system to avoid voltage collapse blackouts. The computation

pplies to avoidi ddle node bifurcation instability of a general
dynamical system.

I. INTRODUCTION

Voltage collapse is an instability of heavily loaded electric
power systems which leads to declining voltages and blackouts. It
is associated with bifurcation and reactive power limitations of
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the power system. Power systems are expected to become more
heavily loaded in the next decade as the demand for electric
power rises while economic and environmental concerns limit
the construction of new transmission and generation capacity.
Heavily loaded power systems are closer to their stability limits
and voltage collapse blackouts will occur if suitable monitoring
and control measures are not taken. Progress has been made in
understanding voltage collapse and monitoring the proximity to
voltage collapse with various indexes (most approaches are cov-
ered in [1], [2]). The sensitivity to controls of some of the indexes
have been computed so that control action may be taken to
optimally improve the index and the voltage stability of the
system. For example, Tiranuchit and Thomas [3] computed the
sensitivity of the minimum singular value of the system Jacobian
and Overbye and DeMarco [4] computed the sensitivity of an
energy function index. Another popular index is load power
margin which may be computed by direct methods [51-[7], opti-
mization [8]-{11], continuation [6], [7], [12}, and continuation
with linear predictor and no corrector [13], [14). This note
computes the first-order sensitivity of a load power margin index
to any controls or parameters appearing in the load flow equa-
tions.

If system parameters vary slowly and continuously, then volt-
age collapse can be explained as a dynamic consequence of a
saddle node bifurcation instability in which the system operating
equilibrium disappears [15]. Discrete contingencies such as loss
of a power line can also weaken the system stability and con-
tribute to voltage collapse; if this occurs, or is hypothesized to
occur when assessing security, we use the saddle node bifurca-
tion explanation after the discrete contingency. This note com-
putes an optimum control direction which steers the system
away from a saddle node bifurcation and the associated voltage
collapse.

We exploit the geometry of a control space A, the vectors of
which contain real and reactive powers of the loads and genera-
tors and other contro} parameters such as settings of tap chang-
ing transformers and shunt capacitor devices. (The settings of
tap changing transformers and shunt capacitor devices are dis-
crete but we compute the control assuming they are continuous
and then approximate the control with the nearest discrete
setting [16].) Note that the “controls” include load powers which
vary freely in normal operation and are only controlled in
emergencies by selectively shedding loads. It is also useful to
include design parameters in A when planning changes to a
power system. Define X to be the control values in A at which
the stable operating equilibrium has a saddle node bifurcation.
3. typically consists of curved hypersurfaces and their intersec-
tions.! We denote the current control parameters by Ag; the
position of A, relative to X is the key to monitoring and
avoiding voltage collapse. We assume that a load power forecast
is given in the form of a linear increase from the current load
powers. This forecast is described by a ray in A based at A;
controls other than load powers are constant along the ray. The
ray will intersect 3 at the point A, at which the system

! The set of all points of A at which there is a bifurcation is called the
bifurcation set and it generally contains points other than 3. These
points correspond to saddle node bifurcations not involving the stable
equilibrium point, Hopf bifurcations, and other bifurcations not generic
in one parameter systems. We do not consider these bifurcations here:
Saddle node bifurcations not involving the stable equilibrium do not
affect the local stability of the stable operating equilibrium. Hopf bifur-
cations cause oscillatory instabilities, but are probably not important in
voltage collapse because voltage collapses are not observed to be oscilla-
tory. The nongeneric bifurcations are not expected to occur in practice.
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bifurcates and loses stability and the proximity to voltage col-
lapse can be measured by the distance |Ag — A4l Since the
controls other than load powers were fixed in the load forecast
ray, Ay — A lies in the load power subspace of A and [Ag — Al
is a load power margin. If [Ay — Al is too small, then control
action should be taken to increase |Aq — Al in order to avoid or
reduce the risk of voltage collapse. Control action is represented
by a displacement of A from A, in A. This note computes
V,(A — A, DIy, the gradient with respect to A of the index
[A — Al evaluated at Ag. V(1A — A, DIy, is the sensitivity of the
load power margin with respect to control and its direction gives
the optimum direction for control. We prove that V(1A — A, Dlx,
is parallel to the normal vector #, to 3, at A, using generic
assumptions and a dynamic power system model and show that it
is straightforward to compute r, and V(1A — A, DIy, from the
load flow equations.

This note adopts the objectives of Kumano, Yokoyama, and
Sekine [17] and we are indebted to these authors for the geomet-
ric idea of computing an optimum direction in a load power
space which is augmented with other controls. Our computation
of the optimum direction is based on the left eigenvector for-
mula in Dobson [18] for the normal vector n , to 3. The formula
for the normal vector in [17], which uses a right eigenvector, is
only valid for power systems with symmetric Jacobians so that
the left and right eigenvectors coincide. The computation in this
note is much simpler and more direct than that of [17]. The idea
of using a normal vector to determine which loads to shed
appeared in [18].

I1. POWER SYSTEM STATIC AND DYNAMIC MODELS AND
THE NORMAL VECTOR 1 4

Consider the load flow equations

0 =fi(x,A)
0 =fo(x, A)

where x € R" is a state vector describing the bus voltage pha-
sors and A € A is a control vector. f; describes real power
balance at the generators and f, describes real and reactive
power balance at the loads.

We seek to compute the sensitivity V,(IA = A, DI, from the
static equations (1) but want the results to be consistent with the
sensitivity for a general dynamic model extending (1) to which
the voltage collapse theory of [15] applies. A dynamic model [18]
which extends (1) by including generator swing dynamics and
general load dynamics is

0=f(x,A) or ¢Y)

d)=fl(86vy>A) —Aw
bo=w
y =8(f2(8,:A), ).

i=h(z,A) or )

The state vector z = (@, x) = (w, 8, y) where 85 are the gen-
erator voltage angles in x and A is a diagonal matrix of
generator dampings. g defines any smooth dynamic load model
which depends on frequency @ and the real and reactive power
balance at each load (see [15] for an example). Little is known
about the large signal behavior of such load dynamics and a
convincing function g is hard to obtain. For our purposes, we
require the existence of g and the assumptions that g has a
unique zero at (0,0) and that Dg, the Jacobian of g with respect
to its first argument, is globally invertible. We also assume the
technical condition that the operating region of (2) is contained
in a compact positively invariant set; see [15].
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We assume a load forecast in which the load powers increase
as a linear function of a loading parameter ¢:
Mt) = 2o + tp ©)
where u is a fixed vector of unit length defining the direction of
the load forecast ray in A. We write A, = A(t,) for the first
intersection of the load forecast ray with 3 and ¢, for the
loading parameter at the bifurcation. (The disappearance of the
operating equilibrium and the existence of A, is guaranteed by
the absence of any equilibrium for absurdly high loadings.) If the
load increase is slow enough to be modeled as a quasistatic
variation of (2) and the resulting system Z = h(z, A(t)) parame-
terized by ¢ is assumed to be a generic one parameter system,
then the theory of [15], [19] applies and we obtain the following
conclusions about the structure of the bifurcation at (z,, A, ): If
we write k|, for the Jacobian of A with respect to z evaluated
at (z,, Ay), then k|, has a single, simple zero eigenvalue and
corresponding right and left eigenvectors v, w), so that
h,| Vs = wih,l, = 0. In addition, the bifurcation is a saddle
node bifurcation satisfying the transversality conditions [20], [21],
[19]
Wbl =wihlep#0

4.1)

Wihlx (U, %) # 0. (42

Moreover, % is a smooth hypersurface near A, and has a well
defined normal vector n, at A,. Note that we write w',, n,,
and V,(Ix — A,]l,, as row vectors.

The formula from [18] for the normal vector n, to 3 at A, is
simply

ny =wihl, &)
where h,|, is the Jacobian of h with respect to A evaluated at
the bifurcation.

Now we demonstrate that the saddle node bifurcation of the
dynamic model (2) at (z,, A,) = (0, x,, A,) induces a bifurca-
tion of the solutions of the static equations (1) at (x,, A, ) and
the Jacobian f,|, has a zero eigenvalue with corresponding left
eigenvector w,. Moreover the normal vector n, of (5) is also
given by

(6)

This allows n, to be calculated from the static equations (1)
assuming only the general form, but not the details, of the
dynamical model (2). To derive (6), first note that the unique
zero of g at (0,0) implies that (1) has an equilibrium at (x,, Ag)
if and only if (2) has an equilibrium at (0, x,, A,). The respective
Jacobians of (1) and (2) are

ny =wyifils.

fl _A flx
fx=(f") and h,=| 1 0
2 8. Dgfr,

Writing w', = (W], wh,, Ws,), observe that (w},,w),,
wh )R, = 0 implies that

0= (w;*,ws*)(D’;;h) = (w;*,wg*ug)(f:)

so that w, = (w},,w5, Dg) is the left eigenvector of f, corre-
sponding to a zero eigenvalue. (w, is unique since if w, f, =
Wiss W3 )fy = 0 then (wi4,wi A — wy,(Dg) g,
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w34(Dg) Dh |, = 0and w,, =w/, and wy, = w}, Dg since
W', is unique.) Moreover

f]Al*
ny =W’*h,\|* = (wll*swrz*vw'a*) 0
Dgfols
fial
= wiows )| | = wakile ™
Faalx

It is straightforward to check that wh, |, (v, V) =
Wy fexl s (U4, ) where vy = (0,v,) and v, is the right eigen-
vector of f,|, corresponding to the zero eigenvalue. This, to-
gether with (7), shows that the bifurcation of (1) inherits from
(2) the transversality conditions (4).

III. COMPUTATION OF 14, AND THE LOAD POWER MARGIN
SENSITIVITY TO CONTROL

Given a load forecast (3), the system will bifurcate and col-
lapse at A, = Ay + £, u. We compute A, by solving a variant of
the extended system equations [7], [5], [6):

f(x*,/\*) =0
w*fx]* =O
weu—1=0

®

(The last equation of (8) ensures that w, is nonzero; in practice
u can be chosen to be any nonzero constant vector.) Equations
(8) can be solved for (x,,w,,¢,) using Newton—Raphson itera-
tion. ThenA, = Ay + t, u. Note that equations (8) are a variant
of the extended system equations in that they use left eigenvec-
tors in place of the usual right eigenvectors. This has the
advantage of computing the left eigenvector w, required in the
formula (6) for n, as a by-product of the computation of
(x4, A4). The optimization methods of computing the load
power margin also share this advantage since w, is the La-
grange multiplier vector [8]. Continuation methods [7], [12], [13],
[6] could also be used but would require a further computation
of w, from f,|,.

There is a sign ambiguity in the formulas (5) and (6) for n
since both n, and —n, are normal vectors to 3. It is conve-
nient to assume that the normal n, is pointing “outward” so
that changing A in the direction n, leads to the disappearance
of the equilibrium x, . Formula (6) becomes
&)
Strictly speaking, the sign of n, should be determined by
checking that the equilibrium x, disappears when A = A, +
en, for small positive €. In practice, the sign of n, should be
apparent from the expectation that n , should correspond to an
increase in power for most loads. f, is easy to compute and
evaluate at the bifurcation.

Now we prove that the load power margin sensitivity

V(A = 2Dl = —(nep) 'ny (10)

it follows from (10) that the optimum direction for control is
—ny4. Ay and ¢, are well defined smooth functions of the
current control parameters A near A, because X is a smooth
hypersurface near A, and (4.1) implies that n, p # 0 so that
the load forecast ray intersects X transversally at A,. A, = A
+ t, pand | pl = 1 imply that V(1A — A, Dla, = Vit la,. Specify
3, near A, as the zero set of a smooth real function «. Then
a(A,) = 0 and ¢, satisfies 0 = a(A + t,u) and 0 =
(Viadla (I + 9t )l Hence 0 =n, I+ uVit, ) =ns +

ne = 2w fils.
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(n, wVit,ly, and Vit,ly, = —(n, p)~'n,, yielding (10). The
geometric content is clear: the optimum direction to increase
the distance in a given direction u of a point A, to a hypersur-
face 3, is antiparallel to the outward normal n, to =.

It may not be desirable to use all the possible controls to
improve voltage stability. For example, load powers can be
controlled by shedding loads but this is only done in an emer-
gency. In less extreme cases, the objective is to move further
from voltage collapse using controls other than load shedding.
The optimum control direction is then the projection of —n,,
onto the subspace of A containing the controls other than load
powers.

Reactive power limitations of generators have a strong effect
on the the load power margin and should be accounted for when
the load power margin is computed [8], [13], [9], [10]. Since a
generator reaching a reactive power limit changes the system
(for example, generator voltage magnitude and reactive power
output may interchange their roles as state and control vari-
ables), care must be taken that A, is computed for the system
consistent with the generator reactive power limits. This system
will often differ from the more lightly loaded system at A,.

IV. EXAMPLE

We illustrate the computation of the sensitivity of the load
power margin to controls with the Ward & Hale 6 bus system
with a modification to bus 6 as shown in Fig. 1 (see [22] for a
similar modification). The state vector x contains the voltage
angles and magnitudes of buses 3, 4-6, 2; bus 1 is the slack bus.
The control vector A = (P5,Qs, Py, Q,, Ps, Qs, P, O, Ps, V5,
n4, n,,C,,Co) contains real and reactive bus powers, bus 2
generator voltage magnitude, transformer tap ratios, and the
capacitances at bus 4 and 6. A, at the operating point x, is given
by the values in Fig. 1. The load forecast is given by linearly
increasing the load powers at buses 3, 5, 6 so that

AMt) = Ao + tp = Ay + (0.3207,0.0758,0,0,0.1749,

0.1049,0.2915,0.8746,0,0,0,0,0,0)". (i1)

We solve (8) for (x,,w,,t,) (see Table I) and compute A, =
Mt,) from (11). The load power margin [A, — Aol = ¢, = 0.162.
The first nine columns of the f, matrix correspond to load
powers and are a 9 X 9 identity matrix. The remaining columns
correspond to the other controls. It is straightforward to com-
pute the normal vector n, using formula (9) (see Table II).

The optimum direction for parameter control is —n,. For
example, inspection of the components of —n, shows that Qg is
the load bus power must influential on the load power margin
and bus 6 is the load which can most effectively be shed. Bus 6
can also be interpreted as the weakest system bus {13]. If no
loads are to be shed, then the optimum control direction is given
by the negative of the second row of »n, in Table II, showing, as
might be expected, that increasing the capacitor values and
decreasing the tap ratios steers the system away from voltage
collapse. The relative sizes of the components of —n, give the
relative proportions of each control to most effectively increase
the load margin.

V. Di1scUSSION AND CONCLUSIONS

When the load power margin is computed by a constrained
optimization technique, the sensitivity of the load power margin
to the controls such as load powers on the right-hand side of the
constraints is given by the Lagrange multiplier vector at the
bifurcation [8]-[10]. This is useful because weak buses or areas
may be identified as those with large voltage magnitude sensitivi-
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Fig. 1. Modified Ward & Hale 6 bus system.

ties to generator power variations [14], [9], {10). The Lagrange
multiplier result follows from our computation because the left
eigenvector w, of the Jacobian is the Lagrange multiplier
vector at the bifurcation and the f, matrix is simply the identity
matrix in this case so that the Lagrange multiplier vector is 7.
Our computation confirms the Lagrange multiplier results and
generalizes them to any controls or parameters appearing in the
load flow equations.

Overbye [4] and Kumano [17] suggest using the optimum
control direction for real time avoidance of voltage collapse:
Once the optimum control direction —n , is computed, a term
can be included in the optimal power flow which has minimum
cost when selected controls are changed in the direction —n,.
In an emergency, it would be appropriate to neglect cost and use
all available controls according to the direction —n ,, including
shedding selected loads. Note that the optimum combination of
loads to be shed that we compute is strictly valid only for small
load changes.

Liu and Vu [23] have demonstrated examples in which it can
be advantageous to lock tapchangers to improve voltage stabil-
ity; we suggest that the best direction and relative proportions of
tapchanges to avoid voltage collapse may be deduced from the
sensitivities of the load power margin to the tap changer set-
tings.

This note uses an index of voltage collapse which assumes a
load forecast. If the forecast is unavailable, or a measure of
system robustness independent of load variation is wanted, then
the sensitivity computation also works with the load power
margin index of [24], [25] which measures the minimum distance
(worst case load power variation) from A, to Z.

Basic to our computation is the smooth slow variation of the
controls A which allows quasistatic analysis of (2). This is an
idealization; in practice, the system state and controls are sub-
ject to disturbances and variations which may be discrete or not
slow compared to the dynamics of (2). A consequence is that the
system state will not exactly track the stable equilibrium of (2)
and may be displaced outside the region of attraction of the
stable equilibrium just before bifurcation (see [4] for further
discussion). Nevertheless, we suggest that it is still sensible to
control the real system with the controls described above be-
cause steering the idealized system away from the bifurcation is
a precondition for stability of the real system and will tend to
increase the minimum size of disturbance which can destabilize
the real system.

We have computed the sensitivity to controls and parameters
of a load power margin index of voltage collapse. The computa-
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TABLE 1
a3 Vs ay Vs Qs Vs ] Vs @
X —-0.216 1.106 -0.173 1.035 -0.225 1.101 -0.226 1.170 -0.019
Xy -0.263 0.979 -0.203 0.910 —0.266 0.895 —0.253 0.892 -0.114
Wy 0.181 0.258 0.145 0.275 0.303 0473 0.298 0.632 -0.017
TABLE 1II
P, Qs P, Q4 Ps Os Py Qs
ny 0.114 0.162 0.091 0.172 0.190 0.296 0.187 0.395
P, V, Cy Ce ny n,
-0.010 —0.616 —-0.314 -0.143 0.309 0.117
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