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Abstract

Several voltage collapses have had a period of slowly decreasing
voltage followed by an accelerating collapse in voltage. In this paper
we analyze this type of voltage collapse based on a center manifold
voltage collapse model. The essence of this model is that the system
dynamics after bifurcation are captured by the center manifold trajec-
tory and it is a computable model that allows prediction of voltage col-
lapse. Both physical explanations and computational considerations of
this model are presented. We clarify the use of static and dynamic
models to explain voltage collapse. Voltage collapse dynamics are
demonstrated on a simple power system model.

1. Introduction

The continuing interconnections of bulk power systems, brought
about by economic and environmental pressures, has led to an increas-
ingly complex system that must operate ever closer to the limits of sta-
bility. This operating environment has contributed to the growing
importance of the problems associated with the dynamic stability
assessment of power systems. To a large extent, this is also due to the
fact that most of the major power system breakdowns are caused by
problems relating to the system dynamic responses. It is believed that
new types of instability emerge as the system approaches the limits of
stability.

One type of system instability which occurs when the system is
heavily loaded is voltage collapse. This event is characterized by a
slow variation in the system operating point, due to increase in loads,
in such a way that voltage magnitudes gradually decrease until a sharp,
accelerated change occurs.

It is interesting to note that prior to the sharp change in voltage
magnitudes, bus angle and frequency remain fairly constant, a condi-
tion observed in several collapses. During a collapse, voltage control
devices, such as tap-changing transformers, may not be activated if the
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voltage magnitudes prior to undergoing the sharp change lie in a "per-
missible range" and, after the change occurs, the fast rate of the change
trips under-voltage relays before the transformers can respond to it.
Furthermore, control center oOperators observe none of the classical
advance warning signals since the bus angle, frequency and voltage
magnitudes may remain normal until large changes in system state
cause protective equipment to begin to dismantle the network.

In the past, there has been significant debate over whether the
voltage collapse problem is static in nature and can therefore be studicd
as a parametric load flow problem or whether it is dynamic and must
be studied as the trajectory of a set of differential equations. A major-
ity of the work on the problem to date has been focused on the static
problem such as load flow feasibility [1], optimal power flow [2],
steady-state stability [3]. Kwatny et. al. [4] studicd the stalic problem
as a static bifurcation characterized by the disappearance of an equili-
brium point and showed how bifurcation could describe instability both
in voltage and angle. In [6-9] Thomas et al. proposed the minimum
singular value of the Jacobian of the descriptor load flow equations as
a security index and derived static control strategies based on the
index. In [10] Glavisich et al. developed a voltage stability index
based on the feasibility of solutions to the power-flow equations for
each node. A comparison of several proposed methods was given in
[11,12]. Schleuter et al. [13,14] proposed definitions of voltage stabil-
ity and voltage controllability that are "based on the natural
cause/effect relationships that exist at PQ buses in the power systcm
under normal conditions.” Control criteria are derived based on a
linearized set of equations and the definitions.

Research is only now beginning to emerge on the dynamics asso-
ciated with voltage collapse. It is clear that the collapse dynamics can-
not be described solely by the generator dynamics which arc tradition-
ally believed to be responsible for transient instabilities. In [15], vol-
tage instability is associated with tap-changing transformer dynamics
by defining the voltage stability region in terms of allowable
transformer settings. In [16], the voltage collapse was related to the sta-
bility of discrete models of multiple tap-changers in a power nctwork.
Transformer tap-changers were identificd in [17] as a device which
aggravated rapid voltage decay. In [18] the effect of incorporating
induction motor characteristics on the voltage stability region is exam-
ined and a region of attraction is explored. In [19] the voltage collapse
was related to small noise in load demand.
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In this paper we will analyze the dynamics of voltage collapse
based on a center manifold voltage collapse model. The essence of this
model is that the system dynamics after bifurcation are capturcd by the
center manifold trajectory and it is a computable model that allows
prediction of voltage collapse. Both physical explanations and compu-
tational considerations of this model will be presented. The use of
static and dynamic models to explain this type of voltage collapse will
be clarified. Voltage collapse dynamics will be demonstrated on a sim-
ple power system model.

2. System Model
The Generator Model

The gencric generator model can be expressed as
YO = gy®).z(v) @-1)

where y(t) is a vector of generator state variables such as 8, g, E‘;,
etc. z(t) is a vector of system state variables such as voltage magnitude
and angle at load buses. It is not clear at this moment which gencrator
state variables should be modelled in (2-1) for the analysis of voltage
collapse. Nevertheless, the center manifold voltage collapse model
applies to a system with any gencrator model of the form (2-1),
irrespective of the dimension of state space in (2-1).

The Load Model

Load characteristics arec known to have a significant effect on sys-
tem dynamics. It is our viewpoint that the load model is the single
greatest impediment to high quality stability assessment. Considerable
effort has been expended in an attempt to derive improved load
models. Classical load models such as constant P-Q, constant
impedance, and constant current models are not appropriate  when
attempting 10 capture severe collapse dynamics. A load model that is
an affine function of frequency for real power demand and a polyno-
mial function of voltage magnitude for reactive power demand has
been adopted by several researchers [19,20). Weedy and Cox
confired that from the voltage stability point of view, the induction
motor is a critical constituent of system loads {21]). Thomas and
Tiranuchit [18,22] were the first to incorporate induction motor charac-
teristics into their dynamic load model for the analysis of voltage insta-
bility. Dobson et. al. [23] suggested the following load model for
analyzing voltage collapse. The load modecl comprises a dynamic
induction motor model (representing an industrial load) in parallel with
a constant P-Q load and a constant impedance load (representing
residential plus commercial loads). The load model at bus i considercd
in this paper is based on load voltage dynamics due to Walve [25].

Py; = Po; + Py + Ko + Koy (V; + TIV)) (2-2)

Qui = Qoi + Qui + Kudi + Koy Vi + Ko V2 (2:2b)
where Py;, Qp; represent the constant real and reactive powers of the
motor and Py ;, Q;; are the P-Q load. We have added the term vazviVZ
to Walve’s linearized model in order to better represent the nonlinear
static Q-V relationship. Also, we have embedded the constant
impedance part of the load in the system admittance matrix.
The real and reactive power balance equations at load bus i are
expressed by
—Pyi= 3 ViVBysin(§, - 8) + ¥ V,VBysin(§, - §) (2-3a)
jelg jel,

- Qi == T ViVBjcos(d - &)~ ¥, VV;Bycos(§; - 5) 2-3b)

ielg e,

The significance of load model (2-2) is that it is dynamic and that
the resulting power system model (2-1) - (2-2) is (after simple alge-
braic operations) purely a vector differential equation with well-defined
unique solutions. This circumvents a long-standing difficulty associ-
ated with the structure-preserving models which are a mixture of
differential and algebraic equations and whose solution trajectories may
not be well defined.

3. Bifurcations

Consider the power system model described by equations (2-1) -
(2-2) in the general form

x = F(x,\) (3-1)

where x is the state vector and A is a time-varying parameter vector.
Specifically, in the power system model described in section 2, X =
8, ®, V) and A denotes the parameter vector that includes real and
reactive power demands at each load bus. The parameters in (3-1) are
subject to variation and, as a result, changes may occur in the qualita-
tive structure of the solutions of the static equation associated with (3-
1), i.c., solutions of F(x, A) = 0 for certain values of A. For example, a
change in the number of solutions for x may occur as the parameters
vary. As a result, the dynamic behavior of (3-1) may be altered.

Bifurcation theory is concerned with branchings of the static solu-
tions of (3-1) and, in particular, it is interested in how solutions x(A)
branch as A varies. These changes, when they occur, are called bifur-
cations and the parameter values at which a bifurcation happens are
called bifurcation values.

It is important in our following analysis of voltage collapse to
distinguish two different periods: the period before bifurcation and the
period after bifurcation. Power systems arc normally operated near a
stable equilibrium point. As system parameters change slowly, the
stable equilibrium point changes position but remains a stable equili-
brium point. This situation may be modelled with the static model
F(x,\)=0 by regarding F(x,.)=0 as specifying the position of the stable
equilibrium point x as a function of A. (Here it would be more pre-
cise to call F(x,\)=0 a quasistatic model since A varies and causes
corresponding variations in x). This model may also be called
parametric load flow model. Exceptionally, variation in A will cause
the stable equilibrium point to bifurcate. The stable equilibrium point
of (3-1) may then disappear or become unstable depending on the way
in which the parameter is varied and the specific structure of the sys-
tem.

After the bifurcation, the system state will evolve according to the
dynamics of (3-1). (Some types of bifurcation result in the persistence
of the stable equilibrium point even after the bifurcation and the static
model applies just as before the bifurcation. However, we do not
expect this sort of bifurcation to be typical in power systems.) To sum-
marize, analysis of a typical bifurcation of a stable equilibrium point in
a power system with slowly moving parameters has two parts:

(1] Before the bifurcation when the (quasi)static model applics.
[2] After the bifurcation when the dynamical model (3-1) applics.
The current research on voltage collapse uses the static model and only

considers the system before the bifurcation. We stress that the static
model is not applicable afier the bifurcation.

In [24], Dobson and Chiang investigated a generic mechanism
leading to disappearance of stable equilibrium points and the conse-
quent system dynamics for one-parameter dynamical systems. A vol-
tage collapse model was suggested based on this analysis and the
results are briefly summarized in the next section.



4. A Voltage Collapse Model

Suppose that the power system model described by cquations (3-
1) has the specific form

x = F(x, Q) “4-1)

where Q is a parameter such as a reactive power demand. We assume
that Q varies slowly or quasi-statically with respect to the dynamics of
(4-1). For cxample, if the system represented by equation (4-1) is ini-
tially near a stable equilibrium point x,(Q), then the dynamics will
make x track x(Q) as Q slowly varies. One typical way in which sys-
tem (4-1) may lose stability is that the stable cquilibrium point x,(Q)
and another equilibrium point x;(Q) coalesce and disappear in a
saddle-nodc bifurcation as parameter Q varies.

In [24], it is shown that for generic one-parameter dynamical sys-
tems the equilibrium point x,(Q) is type-one. By type-one, we mean
that the corresponding Jacobian matrix has exactly one eigenvalue with
a positive real part and the rest of the cigenvalues have negative real
parts. Furthermore, x;(Q) lies on the stability boundary of x(Q). The
Jacobian matrix, when evaluated at x{(Q), has all of its eigenvalucs
with only negative real parts. However, one of cigenvalues is close to
zero. At the bifurcation occurring at say, Q = Q’, equilibrium points
x(Q) and x;(Q) coalesce to form an equilibrium point x". The Jacobian
matrix evaluated at x” has one zero eigenvalue and the real parts of
other cigenvalues are negative. The eigenvector p that corresponds to
the zero eigenvalue points in the direction along which the two vectors
x,(Q) and x,(Q) approached each other. There is a curve made up of
system trajectories which is tangent to eigenvector p at x". This curve
is called the center manifold of x* and is the union of a system trajec-
tory WE converging to x°, the equilibrium point x* and a system trajec-
tory W¢ diverging from x*. We choose the sign of p so that it points
along WJ. If Q increases beyond the bifurcation value Q‘, then x”
disappears and there are no othcr equilibrium points nearby.

Next, we consider the system dynamics described by (4-1) when
Q remains fixed at bifurcation value Q'. x" is an unstable equilibrium
point and a trajectory starting near x" diverges from x approximately
in the direction of p. Trajectories starting from points lying on Wy will
move away from x" and remain on W, Moreover, trajectories starting
from points near W will move away from x” approximately along Wy
and in fact, the trajectories will approach W exponentially fast. The
initial movement along W is slow. Recall that before the bifurcation
occurs, the system state is tracking its stable equilibrium point. There-
fore, at the moment the bifurcation occurs, the system state is in a
neighborhood of x*. Hence, if the system trajectory is near Wy at the
moment that the bifurcation occurs and if Q remains fixed at its bifur-
cation value Q, then the system dynamics move near W¢. The system
dynamics due to the bifurcation are then determined by the position of
W{ in state space. If W} is positioned so that some of the voltage
magnitudes decrcase along W, then we associatc the movement along
W¢ with voltage collapse. This is the center manifold voltage collapse
model. This model has two advantages from a computational point of
VIEW.

(1) Since p is tangent to WS at X", the initial direction of W¢ near X"

is determined by p which can be computed from the Jacobian
matrix at x".

(2) Since WY is a system trajectory, the dynamics of voltage collapse
can be predicted by integrating system equations (4-1) starting on
W¢ near x”.
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The center manifold voltage collapse model can be summarized
as follows: Suppose the general power system model represented by
equation (4-1) has a saddle-node bifurcation at (x',Q‘). The dynamics
at the bifurcation are described by motion along the system trajectory
W¢ starting near x*. If some of the bus voltage magnitudes decrease
along W, then the movement along W is a model for voltage col-
lapse.

It should be stressed that not all saddle-node bifurcations of
power system equations (4-1) are of the voltage collapse variety. For
this reason, a thorough analysis of the system dynamics after bifurca-
tion is essential. Furthermore, we argue that if the occurrence of a
bifurcation implies that a dynamic voltage collapse occurs, then there
must be a model that describes the dynamics after the bifurcation. The
question is "What is the appropriate model for these dynamics?”. This
question is unanswered in the currently available literature. The model
proposed in this section fills this gap and, perhaps more importantly, it
is a computable model that allows prediction of voltage collapse.

We remark that the saddle-node bifurcation and consequent
dynamics described above are typical in the sense that if a stable
equilibrium point does lose stability and disappears, then it will do so
in the manner described above (sce the discussion of genericity in
[24]). Moreover, this behavior is typical regardless of the dimension
of the state space. Thus the dynamics after a saddle-node bifurcation of
large scale power system models of the form (4-1) can still be
modelled by movement along the one dimensional ccnter manifold tra-
jectory, despite the large dimension of the state spacc.

In this paper we investigate how the interaction between loads
and generators may cause voltage collapse using the center manifold
model of the dynamics after bifurcation. However, we emphasize that
the center manifold model applies to any power system model of the
form (4-1) after a saddle-node bifurcation. In particular, it might be
applied to show how other components of power systems such as tap-
changing transformers contribute to voltage collapse.

5. Computational Considerations and Physical Explanations

In this section we discuss how to compute and physically inter-
pret the voltage collapse model proposed in last section. Suppose that
the power system described by equation (4-1) is operating at the stable
equilibrium point x,(Q;), where Q; is the rcactive power demand at load
bus i. Now, assume that Q; is slowly increased while other paramcters
remain fixed. The equilibrium point x,(Q;) will vary as Q; is increased.
We expect a bifurcation value Q" such that

(i) x,(Qy) is stable if Q; < Q]

(if) x,(Q;) becomes unstable by coalescing with another type-one

equilibrium point in a saddle-node bifurcation if Q; = Qf, and

(iii) x,(Q;) will disappear if Q; > Qf, i.e. there does not exist any

equilibrium point in a neighborhood of xs(Qi‘) for Q; > Q;.

The bifurcation value Q" can be calculated by solving the n+1
nonlinear equations

0=F(x, Q) (5-1a)

af
0= det(5 - o) (5-1b)

for the bifurcation point (x(Q;), Q;). These equations represent
necessary conditions for a saddle-nodc bifurcation. Indced, at the
bifurcation, x, is an equilibrium point (equation 5-1a) and the system
Jacobian has a zero eigenvalue when evaluated at X (equation 5-1b).
It should be noted that approaches based on repetitive load flow calcu-
lations for finding the bifurcation point often provide an interpolation
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point rather than an exact solution. This is because the singularity of
the Jacobian matrix at the bifurcation point causes convergence prob-
lems in gradient-based algorithms such as Newton-Raphson.

The step following the calculation of the bifurcation value and the
bifurcation equilibrium point is to determine the ccnter manifold. This
can be accomplished by the integration of system cquation (4-1) from a
point lying on the eigenvector p associated with the zero eigenvalue
and sufficiently close to the bifurcation equilibrium point. However, we
note that the ratio between the largest and the smallest eigenvalue of
the system Jacobian when evaluated near the bifurcation equilibrium
point is large. Hence the differential equations near the bifurcation
equilibrium point are stiff and integration schemes designed for stiff
differential equations are required.

Now we discuss the physical implications for the power system
before and after the bifurcation. Beforc the bifurcation, the system
remains at a stable equilibrium point as the reactive power demand Q;
varies. We interpret this as the system having the capability to supply
the reactive power demanded by the load and identify Q" as the max-
imum possible reactive power which the transmission system can
transmit. When a system is capable of supplying a certain reactive
power, we assume not only that the reactive power is supplied at some
instant, but also that it is supplied in a robust way, that is, when the
system state is at a stable equilibrium point. We identify the difference
between Q;” and Q; as the reactive power margin or rcserve available.
This agrees with the physical explanation in [5] that attributes voltage
collapse to load reactive power supply problems.

At the bifurcation the system state moves along the center mani-
fold trajectory and the system behavior depends on where the trajectory
goes in state space. Two cases may occur. In the first case, the sys-
tem trajectory diverges and tends to infinity. This implies that the Sys-
tem will not settle into steady-state at some finitc value in the state
Space. We note that the model breaks down and no longer applies
when the trajectory lcaves some bounded region. For example, in a
voltage collapse, if the voltage falls sufficiently, protection devices will
change the power system structure so that the assumed power system
model no longer applies. In the second case, the system trajectory
tends to another stable cquilibrium point. If the system model
remained applicable as the system state moved to the new stable equili-
brium point, then the center manifold model predicts that the system
trajectory will converge to a different, stable configuration after the
bifurcation.

6. A Numerical Example

In order to physically illustrate the center manifold voltage col-
lapse model, we consider the power system model shown in Figure 1,
which is taken from [23]. This system consists of a load bus and two
generator buses. One of the generator busses is treated as a slack bus.
The load is modeled by a simplified induction motor in parallel with a
constant P-Q load and constant impedance as described previously in
equation (2-2). For easy reference, the equations are given by

Py =Py + Py + Ky + KoV + TV)

Qa= Qo+ Qi + Kb + Ko,V + KgpV2
where Py, Qq are the constant real and reactive powers of the motor
and Py, Q, are the P-Q load.

The dynamics of the non-slack-bus generator is described by the
swing equation

M8, + Db, = Py + Vy VY i3 — 8, — 0,,) + V2Y, sinf,,

Yol(=bo-F) V5

Fig. 1. A simple power system.

where M, D and P, are the generator moment inertia, damping
coefficient and mechanical power, respectively. The load bus includes
a capacitor as part of its constant impedance representation in order to
maintain the voltage magnitude at a nominal and reasonable value. It is
convenient to derive the Thevenin equivalent circuit with the capacitor.
The adjusted values are [23]

. Vo
Vo= oy 2 1 %
(1+CYg “ - 2CYq ‘cosBy)

Yo = Yo(l + C¥Y5 % - 2CY; tcosBp*
8 = 6 + tan™ ! Yo sind_ I_Silneo
1 - CYy “cosfy
The real and reactive powers supplied by the network to the load are
given by
P = - VoVYsin(d + 8g) — Vi, VYsin(3-5,,+6,,) (6-1a)
+ (Y(sinfg + Y,,sinf,) V2
Q = VoVYqeos(8 + 80) + Vi VY,1c08(5-5,49,,) (6-1b)
— (Yqe088g + Y,cos0,,)V2

Thus, the resulting system equations are

5 = 00, (6-22)

Méy, = ~ Doy, + Py, + V, VY, sin(s — 5, — 8,) (6-2b)
+ V2Y,,sin6,,

Koo =K,V - KqaV2+Q - Qp - Q (6-2¢)

TK oKV = KpoKgra V2 + (KK g ~ KooKV (6-2d)

+KpQo + Q1 = Q) — Ky + Py - P)

where P and Q are from equations (6-1a) and (6-1b). The load param-
eter values used in the simulation are: Kow = 04, K, = 0.3, Koo =
-0.03, Kqy = -2.8, Koy = 2.1, T = 8.5, Py = 0.6, Qp = 1.3, P =Q
0.0 and the network and generator parameter values were Y, = 20.0, 6,
=-5.0, Vo = 1.0, C = 12,0, Yy = 8.0, 8 = -12.0, Vo =25, Y, = 5.0,
0, =-50, V,, = 1.0, P, = 1.0, M = 0.3, D = 0.05. All parameter
values are in per unit except for angles, which are in degrees.

The reactive power demand Q) is chosen as the system parameter
in (4-1). In order to compute bifurcation value Q; and the associated
bifurcation equilibrium point, the following approximate formulas [23]
are useful. The approximate bifurcation value is

(= Ko + VoYg + VY,
4(Kqo + Yo + Yy)

Q= Qo (6-3)

and the approximate voltage magnitude at the bifurcation equilibrium
point is



ve o (= Ka+ VoYo+ VYo

: (6-4)
2Kq2 + Yo + Y)

Formulas (6-3) and (6-4) are derived from the approximate static model
[23]

Qo+ Qi — (= Kgu + VoYg + Ve YV (6-5)
+ Ko+ Yo+ Yp)V2=0

These approximations show the relationship between the bifurcation
point and certain load, transmission network and generator parameters.
The two values generated by these approximations were used as an ini-
tial values for finding the saddle-node bifurcation point of system (6-2)
with Q; being the parameter. The bifurcation equilibrium point is x* =
(8, ®",8",V") = (0.348, 0.0, 0.138, 0.925) and the bifurcation value is
Q; = 11.41. The eigenvector associated with the zero eigenvalue at
the bifurcation equilibrium point is p = (0.23,0.0,0.099, - 0.97). The
relatively large negative component of the eigenvector associated with
voltage indicates that at the bifurcation point, the initial movement of
the system dynamics will be in a direction such that voltage magnitude
decreases while the other state variables remain fairly constant.

In this example, the system dynamics at the bifurcation are
described by the center manifold W which can be obtained by numeri-
cal integration methods designed for stiff equations. Figure 2 show the
system dynamics, starting from the point x4 = X"+ 001 p, in the vol-
tage and angle spacc respectively. Figure 2 demonstrates the dynamics
of a voltage collapse phenomenon after a saddle-node bifurcation.
Note that during the entire process the bus angles remain fairly con-
stant.

0.8 T

vV {pu)

0.2 T

6m
20

" s ; s : J y
o T t + t t t 1

0.000 0.005 0.010 0.015 0.020 0.025 0.030

time (seconds)

Fig. 2. Voltage magnitude and angle at load bus when bifur-
cation occurs.
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Case 1: slowly varying reactive power demand

The previous example demonstrated the center manifold model
for the dynamics of voltage collapse after a saddle node bifurcation.
Now we simulate the behavior of the example both before and after the
bifurcation to illustrate the entire process (wc use the same set of
parameters as that in the above except Y,, = 1.0). We assume that the
reactive power demand Q; varies slowly, linearly increasing starting
from below the bifurcation value Q;. In particular, Q; = 10.912+0.02t.
The initial system state is found by solving (6-2a) with Q, = 10917;
i.e., performing a load flow. The differential equations were then
numerically integrated using a stiff differential equation solver. The
result is shown in Figure 3. As expected, a voltage collapse occurs at
the time when Q, passes Q;. Before the bifurcation, the system state
tracks the stable equilibrium point as it varics slowly with Q; and the
static model is a good approximation to the system behavior. The vol-
tage decrease before the bifurcation is slow because the variation of Q;
is slow. The system can supply sufficient reactive power to the load
while Q; < Q;. After the bifurcation, the behavior is similar to that
predicted by the dynamical center manifold model presented above.
(The difference between the two is that in this example, Q; continues
to slowly increase after the bifurcation, while the center manifold
model assumes that Q, is fixed at Qf‘)

1.5 T
- _//K/\
0.5 T
0.0 T
3
Y -0.5
®
o
o
=
g -1.0 f } ! } e
0.00 0.05 0.0 0.15 0.20 0.25

time

Fig. 3. Voltage magnitude at load bus when the reactive
power demand is slowly varied. '

Case 2: system parameters versus bifurcation values

During normal operation, it is important to understand the effects
of varying different system parameters on the system’s capacity to sup-
ply reactive power. In other words, we need to determine how varying
system parameters affects the position of bifurcation point. During
normal operation, there is a stable equilibrium point and the static
model (6-2) with left hand side zero is applicable. We argue that
enhancement of the transmission capability (say, by increasing the
transmission parameter Y., or Yg) would increase the capacity of the
transmission network to supply reactive power. This is illustrated in
Figure 4 showing the relationship between the transmission line param-
eter and the bifurcation value. The figure indicates that a larger
transmission capacity ensures a larger bifurcation value.

One efficient way to increase the capacity of the transmission net-
work to supply reactive power to a load bus is to install (or increasc)
capacitors at that bus. This is common utility system practice for
transmission systems as well as distribution systems. The relationship
between the bifurcation value of system (6-2) and the amount of capa-
city installed at the load bus is shown in Figure 5 and supports this
viewpoint. This also indicates that static var compensation at the
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receiving end of a long distance transmission line can improve system
conditions relative to a possible voltage collapse.

ie o r //
+ /
*
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n r /// B
Ym
Fig. 4. Relationship between the transmission line parameter
and the bifurcation value.
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,//
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//,_/
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c

Fig. 5. Relationship between the installed capacity at the load
bus and the bifurcation value,

A reasonable way 10 protect the system from voltage collapse is
to move the bifurcation equilibrium point outside the permissible
region of operating points. For example, this could be done by keeping
the voltage magnitude in the bifurcation equilibrium point below 0.95
p.u. The relationship between the voltage magnitude at the bifurcation
equilibrium point of system (6-2) and the amount of capacity installed
at the load bus as well as the transmission line parameter are shown in
Figures 6 & 7 respectively.

We have compared the results in Fig. 4-7 for the (exact) static
model ((6-2) with left hand side zero) to those from (6-3) and (6-4),
which were derived from the approximate static model (6-5). The
exact and approximatc static models are in close agreement, with

maximum relative errors of 4%, 2%, 4%, 1% for Fig. 4-7 respectively.

Although reactive power demand scems to be a relevant parame-
ter for voltage collapse [23], we note that the description of dynamics
after saddle-node bifurcation of a stable equilibrium point may apply to
other types of instabilitics in power systems and other parameters such
as real power demand may prove to be relevant for more general insta-
bilities. The central point is 10 determine which parameters play a key
role in the process of interest. This requires comprehensive knowledge

of the characteristic propertics of cach power system and engineering
judgement.

voltagelp.u.)

y

—
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Fig. 6. Relationship between the transmission line parameter
and the voltage magnitude at the bifurcation point.
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Fig. 7. Relationship between the installed capacity at the load
bus and the voltage magnitude at the bifurcation point.

7. Conclusions

Several voltage collapses have had a period of slowly decreasing
voltage followed by an accelerating collapse in voltage. In this paper
we clarify the use of static and dynamic models to explain this type of
voltage collapse where the static model is used before a saddle-node
bifurcation and the dynamic model is employed aficr the bifurcation.

Before the bifurcation, a static model may be used to explain the
slow voltage decrease. The closcness of the system to bifurcation may
be interpreted physically in terms of the ability of transmission systems
lo transmit reactive power to load buses. Simulation results show how
this ability varies-with system parametcrs. We suggest that voltage
collapse could be avoided by manipulating system parameters so that
the bifurcation point is outside the normal operating region.

After the bifurcation, the system dynamics is modelled by the
center manifold voltage collapse model [23,24]. The essence of this
model is that the system dynamics after bifurcation arc captured by the
center manifold trajectory. The behavior predicted by the model is
found simply by numerically intcgrating the system differcntial equa-
tions to obtain this irajectory.



The simulation result shows that a slowly increasing rcactive
power demand might cause a voltage collapse. This contrasts with the
conjecture that it is the protection system that causes the abrupt change
in trajectory. In our simple power systcm cxample we chose to investi-
gate how a dynamic load and generator might cause voltage collapsc.
The modelling in this example is probably oversimple; nevertheless we
regard it as an important first step towards the goal of demonstrating
voltage collapse in a realistic power system model.

We comment on future research dircctions. The voltage collapse
model is very general and may be applied to any system of differential
equations with a slowly varying parameter. Thercfore we are confident
that it can be applied to more realistic power system models. (Indeed,
since the theory is a general account of typical system behavior, useful
applications in other areas may well emerge.) It is not yet clear what
power system models are adequatc for analyzing real voltage collapses
either in system size or the componcnts modelied. More research in
devising suitable dynamic models of system components is needed.
For example, the generator control loops or limitations might necd to
be modelled. Improved dynamic load models are needed and further
experience in applying our theory to realistic power system models is
needed in order to judge to what extent our approximation of slowly
varying parameters is appropriate.

Most of the previous analysis of voltage collapse has considered
only the period before bifurcation. In this paper we show by an exam-
ple that voltage collapse may be studicd before bifurcation with a static
model and after bifurcation with a dynamic model. We are encouraged
that the simulation of our example captures qualitative features of a
real voltage collapse. We hope to extend our modeling to larger or
more dctailed power system modcls.
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DISCUSSION

HANS GLAVITSCH, Swiss Federal Institute of Technology,
Zirich, Switzerland. In this paper the authors address
a very important aspect of the voltage collapse
problem and present a number of interesting results
for which they are to be commended.

The problem is the inclusion of the dynamic behavior
of the system under a collapse situation. In the paper
there 1is a numerical example whereby its dynamics is
due to derivatives of the voltage at the load bus.
From the discusser's point of view there are two
questions to be answered:

1) Is the dynamic behavior of the system near a
collapse situation adequately represented ?

2) Is the load model representative ?7-

As to the first question it seems that voltage stabi-
lity 1in the sense of steady state stability can be
represented this way. The system could be-extended by
adding the voltage regulator or other features of the
system. However, it is to be realized which effects
are the dominant ones which contribute to voltage
instability, e.g. tap changers, domestic loads, etc.
Thereby the time evolution of the instability effect
is important. If there is a substantial portion of
induction motor load the interaction with the supply
system is quite different from a system having a
regulated domestic load. Thus, the models of the
supply system and of the load as far as their time
behavior 1is concerned have to be adequately chosen.
The important aspect is that an assessment can be done
for small deviations only.

The second question has wider implications. From the
knowledge of power systems it is to be expected that
it is not easy to model load over a wide range of
voltage magnitudes. When the voltage drops below 0.85
p.u. a model which is representative for the normal
voltage level is probably not accurate anymore. This
comment is already implied in the first question.
However, there is another point which may be explained
by the following.

If an ac source is taken having a reactance attached
which supplies a reactive load only and the load 1is
constant (constant Q) there 1is a voltage limit.
Increasing the load beyond the limit does not yield a
solution for the voltage. If according to the paper an
extension to the load model (proportional to V, V2, V)
is made there is a mathematical solution, i.e. the
voltage follows the manifold beyond the bifurcation
point. The main observation thereby is that the reac-
tive load is not constant anymore but varies with the
voltage.

The question behind this new model is if the basic
insufficiency of the socalled static approach
(constant Q) having no solution beyond the bifurcation
point has been resolved. What the new model does 1is
essentially a reduction of the reactive load. In the
moment a reduction of the load 1is permissible the
static approach will also offer a solution which has a
different character but anyway there is one.

It seems that by assuming a different load model the
character of the problem has been changed substan-
tially. The question of supplying a constant reactive
load beyond the limiting voltage magnitude remains as
it is. Technically there are several ways out. Either
it 1is agreed that the reactive load 1is allowed to
change or it is maintained that the load 1is really
constant. In the latter case there is no solution to
the load case. In the first case there is a variety of
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solutions of which there is one as shown in the paper.
What remains, however, is the voltage behavior beyond
the bifurcation point. The model as assumed here is
just an outlet for the voltage to be continued. As
mentioned earlier it can hardly be assumed that the
load model under normal conditions is also valid for
lower voltage levels. Hence, caution has to be exer-
cised when interpreting the voltage beyond the bifur-
cation point. With other words, one has to be aware of
the correctness of the load model.

The authors are invited to give their opinion on these
aspects of the problem.

M.M. BEGOVIC, A.G. PHADKE, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24060: The
authors are to be commended for their effort to explain the
dynamics of voltage collapse in power systems using the static
bifurcation theory. The parameter dependent state space model

x = F(x,1)

is subjected to geometric contortions caused by the slow change
of A which moves the system to a static bifurcation and causes
the disappearance of a stable equilibrium point for a certain
critical value of parameter A%. The conditions (5-1a) and (5-1b)
in the paper define the dependence of a saddle-node bifurcation
value on the changes of one parameter. The subsequent system
trajectory along the center manifold W¢ is characterized by the
initial slow dynamics, which complies well with the
observations of the actual collapse cases. The discussers agree
that proper load modeling is instrumental in assessing the
correct bifurcation value and have two questions:

1) The use of the composite dynamic load model ((2-2a),
(2-2b) in the paper) is an obvious convenience, because it
allows to analyze the system in a state space without a vector
field (flow) defined on it, which would be the case if loads were
modeled without dynamics. In reality, however, it is reasonable
to expect that at least some of the loads would have to be
modeled as nonlinear without dynamics, implying the change of
the system model into

y = F(y,2,4
0= G(y,zA
where yeRn, zeRm, AcRk, F:Rnotm+ksP, PCRo, G:Ro*mk.Q, QCRm.

Would any of the authors’ results be applicable to the analysis
of the bifurcation reached for A = A0

F(y,z,A%) =0
G(y,z,A%) =0
det[DF(y,z,4%) DG(y,z,A0)]t = 0

which can also produce voltage collapse?

2) The generator model used in the paper applies swing
dynamics equations to the constant voltage source. What do
the authors think would be an appropriately simple model
relevant for voltage collapse analysis on a system of larger size?

C. 0. Nwankpa and S. M. Shahidehpour, (Department of Electrical
and Computer Engineering, Illinois Institute of Technology, Chicago,
Illinois): The authors should be commended for their interesting paper on
the modeling of power system dynamics after bifurcation. We agree with
the authors ‘‘...that not all saddle-node bifurcations of power system
equations (4-1) are of the voltage collapse variety’’. The authors underline
the use of a *‘(quasi)static model’” before bifurcation and the dynamical
model (3-1) after bifurcation.

Would the authors explain how they would handle the situation where the
bifurcation does not take place at the operating point (load flow solution) but
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along some trajectories of the system. This would occur due to the general
assumption used in studying the problem that the rotor angles would be
static (constant). In this regard, we would suggest a time scale separation of
differential equations involved in (3-1) arising from singularly perturbed
equations accounting for slowly varying generator angles’ effects on the
bifurcation values as shown in [A,B,C].

We strongly agree with the authors comments on the relationship between
a slowly varying parameter within the power system and two periods of
slow and fast variations in voltage. The question that should be asked here is
whether a one parameter dynamical model is a good approximation of this
phenomenon? As mentioned above, in voltage collapse studies, rotor angles
may be viewed as slowly varying parameters along with the possibility of
varying Q; values. In this type of multi-parameter dynamical system the
equilibrium point x, (Q) will not be type-one, so how will the eigenvector p
be computed from the Jacobian matrix at x*? How will the integration of the
system equation (4-1) be performed? How seriously will this affect the
computational effort?

We are interested in the interpretation of the center manifold trajectory
describing where the trajectory goes in state space after bifurcation. It is a
known fact from bifurcation theory of multi-dimensional nonlinear systems
that the assumption (iii) of Section 5 indicating that there does not exist any
equilibrium point in the neighborhood of x(Q¥) for Q; > Q¥ is a rather
weak one. From this theory, the system trajectory may diverge and instead
of tending to infinity or another s.e.p., it may tend to an u.e.p. in which the
system model would simulate the persistence of the former s.e.p. [D].

Author’s comments on these points will be appreciated.
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H. D. Chiang, I. Dobson, R. J. Thomas, J. S. Thorp and L. Fekih
Ahmed: We would like to thank the discussors for their interest in the paper
and valuable comments. A point-to-point response to each discussor is
presented below.

In response to Mr. Nwankpa and Dr. Shahidehpour:

[1] When employing bifurcation theory to analyze voltage collapse, it is
important to distinguish between two different spaces: the state space
and the parameter space. In the power system model described in
section 2, the state vector consists of all bus angles, generator bus
frequencies as well as load bus voltage magnitudes while the parameter
vector includes real and reactive power demand at each bus. Variations
in the parameters may cause the system to encounter a bifurcation
which could lead to voltage collapse. Moreover, variations in the
parameter vector will cause a change in the state vector. Hence, it is not
appropriate to view rotor angles as slowly varying parameters; they are
state variables.

It is shown in [A1] that one typical way in which a stable equilibrium
point of a one-parameter dynamical system disappears is through a
saddle-node bifurcation. In power system applications, a one-parameter
dynamical system is a system together with one of the following
conditions:

[2

—_—

® the reactive (or real) power demand at one load bus varies while
the others remain fixed,

® both the real and reactive power demand at a load bus varies and
their variations can be parameterized. Again the others remain
fixed,

® the real and/or reactive power demand at some collection of load
buses varies and their variations can be parameterized while the
others are fixed.

It would be desirable to develop a voltage collapse model so that saddle-
node bifurcations would still arise generically when several power

system parameters are allowed to freely varying. However, we note
that the one-parameter theory is sufficient to illustrate voltage collapse
for certain power system models. For example, Tamura et al. [A2] and
Begovic & Phadke [A3] provide examples of saddle-node bifurcations
associated with voltage collapse due to variation of the reactive power
demand of a single load bus and due to slow increases in both the real
and reactive power demand of all load buses, respectively.

[3] Before we respond to the question of how to handle the situation where
*‘the bifurcation does not take place at the operating point (i.e., the
load-flow solution) but along some trajectories of the system,’” it might
be helpful to review the concepts associated with bifurcation. The term
bifurcation can be broadly used to describe qualitative changes in the
trajectory structure of a dynamical system as the parameters of the
system are varied. In this paper, the focus is on the so-called local
bifurcation theory which is concerned with the bifurcation of equilib-
rium points or with situations where the problem can be cast into this
form such as in the study of bifurcations of closed orbits via a local
Poincare map. The goal of the local bifurcation theory is to investigate
the nature of the static solutions as parameters vary. In this case, local
bifurcation theory assumes a static model. It is clear that the popular P-
V and Q-V curves used in many utilities to analyze voltage collapse fall
in the category of static models and therefore local bifurcation theory
applies. On the other band, global bifurcation theory is concerned with
qualitative changes in the phase portrait of an extended state space.
Global bifurcations are often characterized by an absence of a
transversality condition between the stable and unstable manifolds of
equilibrium points and closed orbits. Typical examples of global
bifurcations are homoclinic and heteroclinic bifurcations. In terms of
the question raised it is not clear to us how to define a bifurcation that
occurs along some trajectory of the system. We presume the question is
how to relate global bifurcation theory to voltage collapse. This
interesting question needs further investigation because the global
bifurcation theory is far from complete mainly due to the fact that
techniques for global analysis of trajectory structure are just under
development.

[4] Suppose that the power system described by equation (4-1) is operating
at the stable equilibrium point x,(Q;), where Q; is the reactive power
demand at load bus 7. If Q; is slowly increased while other parameters
remain fixed the equilibrium point x,(Q;) will vary as Q; is increased.
It can be shown [A1] (not by assumption!) that a bifurcation value QF
exists such that

() x,(Q,) is stable if Q; < Q%,

(i) x;(Q;) becomes unstable by coalescing with another type-one

equilibrium point x;(Q;) in a saddle-node bifurcation if Qi = QF

Just before the bifurcation, x;(Q;) is on the stability boundary of

x(Q;) and x,(Q;) is the closest unstable equilibrium point to

X(Q;). and

(iii) x,(Q;) will disappear if Q: > QF, i.e. there does not exist any

equilibrium point in a neighborhood of x,(QF) for Q; > QF.
At a saddle-node bifurcation point, the system trajectory moves along
the center manifold. One of two cases may occur. In the first case, the
system trajectory diverges and tends to infinity. In the second case, the
system trajectory tends to another stable equilibrium point. We do not
expect that the system trajectory will tend to an unstable equilibrium
point. This is explained as follows: Just before the bifucation occurs a
part of the unstable manifold of the type-one equilibrium point x,(Q,;)
converges to the stable equilibrium point x,(Q;) [A1] and another part
of the unstable manifold, under a generic condition termed a transver-
sality condition, either converges to another stable equilibrium point or
tends to infinity [A4, AS]. Hence, the unstable manifold of x1(Q))
cannot tend to an unstable equilibrium point. And we expect the
existence of a one-to-one map between the center manifold and the part
of the unstable manifold that either converges to another stable
equilibrium point or tends to infinity.

[5

[nd}

In response to Drs. Begovic and Phadke:

1. The use of the dynamic load model (2-2a) & (2-2b) is not for any
purpose of convenience. The dynamic load model, derived by Walve based
on field tests, is used in order to better capture the behavior of the load
during periods of dynamic swing than static load models, such as constant
P-Q, do. Moreover, the resulting power system model is purely a vector
differential equation with a well-defined vector field as well as unique
solutions. On the other hand, if loads are modelled as nonlinear functions
without dynamics, then the resulting power system model is a mixture of
differential equations and algebraic equations. Algebraic equations can arise
from load models that are idealizations of some unmodelled dynamics



which normally tend to act so that the algebraic equations are satisfield.
This kind of system may not be well posed globally; namely, some system
trajectories may not be defined for positive time. One common approach to
resolving this difficulty is to use singular perturbation ideas to develop
dynamics for the voltage magnitudes and angles of load buses which
somehow generalize the algebraic equations as follows:

Yy=F(y, 2, \)
e2=G(y, 2, \)

where € is a small number. This does indeed yield a power system model of
the form (4-1). However, it is unclear how to choose the value e and how to
physically justify such choices.

2. The voltage collapse model presented in the paper is applicable to any
generator model described by a differential equation. Thus, the generator
model could include the effects of flux decay as well as controllers of the
generator such as exciters and governors. However, at this point, it is not
clear to what degree of complexity the generator should be modelled for the
purpose of voltage collapse analysis.

In response to Professor Glavitsch:

We share the viewpoint of Professor Glavitsch relative to the importance
of load model in the analysis of voltage collapse problems. We believe that
load characteristics have a significant effect on system dynamics and hence
on the quality of stability analysis. We also believe that load behavior
during significant system dynamics cannot be adequately described by static
load models such as constant P-Q and should be modelled as dynamic load
models. We admit that a universal dynamic load model for voltage collapse
analysis is still not available and may remain so in the near future. We also
agree that load models for a different mixture of industrial loads,
commercial loads and residential loads should be different. But the problem
is in what sense load models should be different? (e.g., totally different in
form or just different in the coefficients of the same form?).

It should be stressed that the proposed voltage collapse model is not
tailored to any particular load model such as (2-2a) and (2-2b). This voltage
collapse model is applicable to loads that can be described by differential
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equations. In other words, different dynamic load models indeed lead to
different system dynamics. However, the system dynamics after bifurcation
are still captured by the center manifold trajectory. Of course, different
dynamic load models result in different center manifold trajectories.

The load model suggested in this paper is based on load dynamics due to
Walve [25]. It is clear from [25] that the load model is valid for nominal
voltage with small deviations only, as was noted by Professor Glavitsch.
When the voltage magnitude of a load bus is outside its nominal range, the
load model is probably not adequate anymore and needs to be modified. In
such situations one plausible way is to describe the load model as a set of
differential equations with each differential equation representing the load
model for a certain operating condition. In this case the proposed voltage
collapse model is still applicable.
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