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Abstract 
 

Critical infrastructures have a number of the characteristic properties of complex 

systems. Among these are infrequent large failures through cascading events.  These 

events, though infrequent, often obey a power law distribution in their probability versus 

size which suggests that conventional risk analysis does not apply to these systems. Real 

infrastructure systems typically have an additional layer of complexity, namely the 

heterogeneous coupling to other infrastructure systems that can allow a failure in one 

system to propagate to the other system.  Here, we model the infrastructure systems 

through a network with complex system dynamics. We use both mean field theory to get 

analytic results and a numerical complex systems model, Demon, for computational 

results.  An isolated system has bifurcated fixed points and a cascading threshold which 

is the same as the bifurcation point. When systems are coupled, this is no longer true and 

the cascading threshold is different from the bifurcation point of the fixed point solutions. 

This change in the cascading threshold caused by the interdependence of the system can 

have an impact on the “safe operation” of interdependent infrastructure systems by 

changing the critical point and even the power law exponent. 
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1. Introduction 
 

Many critical infrastructure systems exhibit the type of behavior that has come to be 

associated with “Complex System” dynamics.  These systems range from electric power 

transmission and distribution systems, through communication networks, commodity 

transportation infrastructure and arguably all the way to the economic markets 

themselves.  There has been extensive work in the modeling of some of these different 

systems. However, because of the intrinsic complexities involved, modeling of the 

interaction between these systems has been limited [1, 2, 3]. At the same time, one cannot 

simply take the logical view that the larger coupled system is just a new larger complex 

system because of the heterogeneity introduced through the coupling of the systems.  

While the individual systems may have a relatively homogeneous structure, the coupling 

between the systems is often both in terms of spatial uniformity and in terms of coupling 

strength, fundamentally different. Understanding the effect of this coupling on the system 

dynamics is necessary if we are to accurately develop risk models for the different 

infrastructure systems individually or collectively. 

We have already investigated [4, 5] some of the effects of the coupling between 

systems by using a dynamical model of coupled complex systems, the Demon model.  

This model is an extension of the Complex System Models used to study forest fires [6, 

7]. Here, we will focus on some particular aspects of this model, for which the coupling 

introduces some fundamental changes on the properties of the system. 

This type of model is characterized by the existence of a bifurcated equilibrium. Here 

one equilibrium solution is such that all components of the system are working. The 

second type of equilibrium has a fraction of the components failed. As the load on the 

system increases (or the probability of failure propagation) there is a transition from the 

first type of equilibrium to the second, at a critical loading [8, 9]. In a single system, this 

transition point is also the threshold for cascading events of all sizes, that is, transitioning 

between “normally distributed events” [10] and large-scale failures. 

The coupling between the systems can modify the system’s behavior and therefore 

importantly, conditions for safe operation. In this model we introduce a possibility of 

failure propagation from one system to another not only when a component fails but also 
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when a component is out of working order. This has two different effects. One is a 

tendency to keep some components failed while still in normal operation. How many 

depends on the ratio between the strength of the coupling and the repair rate. As we see 

later in this chapter, the “critical loading” bifurcation point of the equilibrium is reduced 

by a function of this ratio. 

The second effect of the coupling is it allows propagation of failures from one system 

to the other during a cascading event. Therefore the cascading threshold is also lowered 

by an amount proportional to this coupling. Since the parameter controlling this effect is 

not the same as the one controlling the equilibrium bifurcation, the equilibrium 

bifurcation point and the cascading threshold are now different. 

Because of these changes, the often used metrics [11, 12, 13] for determining the 

threshold for large scale cascading events in the system will be re-examine and we will 

study the effect of the coupling of the systems on these measures. 

The rest of the chapter will be organized as follows: Section II gives a description of 

the coupled infrastructure model, Demon, and a summary of some of the results from that 

model.   Section III introduces a mean field version of the model and uses it to study the 

possible steady state solutions. The dynamics from the perspective of the mean field 

theory is described in Section IV and in Section V the results of this analysis is compared 

with the numerical solutions of the mean field model. Then in Section VI, the results of 

the mean field theory are compared with the results of the dynamical model Demon. 

Finally, in section VII, a discussion of the implications of these results and conclusions 

are presented. 

 

II. The Demon model 

The infrastructure model discussed here, the Demon model, is based on the forest 

fire model of Bak, Chen and Tang [7] with modifications by Drossel and Schwabl [6].  

For a single system, the model is defined on a user defined 2-D network. An example 

of such network is shown in Fig. 1. Nodes represent components of the infrastructure 

system and lines represent the coupling between components. These components can be 

operating, failed or failing. The rules of the model are for each time step are: 
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1) A failed component is repaired at with probability Pr. 

2) A failing component becomes a failed one 

3) An operating component fails with a probability Pn if at least one of the nearest 

components is failing. 

4) There is a probability Pf that any operating component fails. 

The Demon model [4] considers a coupled system by taking two of these 2-D networks 

and adding another rule: 

5) A component in System 1 fails if the associated component in System 2 is failed 

or failing. The same applies for a component in system 2. 

 

  Fig. 1 A pair of tree networks used for the modeling as an example. 

 

 The ordering of the four parameters in the model is very important as discussed in 

[6]. Here, for the particular infrastructure problem, the different probabilities can be 

directly related to the characteristic times of repair, failure, and propagation of failure. It 

is worth noting that the propagation of failure parameter, Pn, is closely related to the 

loading of the system in a real infrastructure or a more realistic infrastructure model such 

as those described in refs [8, 14, 15]. This means that in the real infrastructures and more 

realistic models, there is an additional feedback that moves the system to near its critical 

point. We will use data from the power transmission system as guidance for those values. 

A more difficult parameter to characterize is the parameter that measures the coupling 
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between the systems. The ability to explore the couplings between systems is an 

important flexibility in Demon as real world systems can have wide variety of couplings 

that can impact their dynamics. For example they can be coupled mono-directionally 

(often, though not always, for pipeline-communications systems) or bi-directionally 

(most other systems, ie power transmission-communications systems), fully symmetric or 

asymmetric coupling strengths (failure in power transmission system has stronger impact 

on communications system then the other way around), homogeneously or 

heterogeneously (general spatial or course grained in one direction), negative 

reinforcement (power transmission-communications) or positive (perhaps infrastructure 

systems - decision making “system”).  A cartoon of this type of coupled system is shown 

in figure 2. For most of the work described here we will use the simplest types of 

couplings, namely symmetric, homogeneous and with negative reinforcement.   

 

Fig. 2 A cartoon of the coupled networks, note that the number of nodes coupled between 
systems can be varied as can the strength, sign and directionality of the coupling 

 

 Using these rules, numerical calculations can be carried out, the dynamics and 

critical behavior investigated and impacts of system structure explored.  

This model is an extension of a previous model [4] based on square grid networks 

to consider arbitrary network structures. Therefore, the basic coupling was from each 

node to four neighbors. The model in Ref. [4] was in turn a simple extension of the 

Drossel model [6] for forest fires with the added rule number 5 that leads to nontrivial 

differences between those models. In the forest fire model, the propagation velocity of a 

disturbance is Pnf where Pn is the probability of a disturbance to propagate from a node to 
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another node and f the number of available nodes to propagate from a given node. In this 

model f is an important parameter to understand the propagation of the disturbances and it 

is not well determined. If K is the averaged number of nodes coupled to a single node in a 

given network, a first guess for f is f = K–1, because, the disturbance is already coming 

from one of the nodes that the failing node is coupled. In the case of the square network it 

was found [6] that f = 2.66 is a better value than 3. Therefore, we vary K in order to 

understand what the possible values are for f. In Table I we have summarized some of the 

properties of the different networks that we have considered in this chapter.  

We will briefly look first at some of the results from this model, then we will 

investigate the mean field theory for this model and finally in section VI we will discuss 

the comparison between the mean field theory and the Demon model results.  

When the control parameter, Pn, exceeds a critical (percolation) value the coupled 

system exhibits characteristics of a critical complex system. This critical value for an 

uncoupled system is given approximately by Pnf = 1, which is when the failures have a 

non-zero probability of propagating across the entire system.  For the full-coupled 

system, the coupling between the two systems modifies this value.   If the cross system 

coupling were the same as the coupling between nodes in each system, this would be the 

same as a larger system whose average node degree (effectively K) is increased by one. 

When the two systems being coupled are identical, but with a coupling strength different, 

typically much smaller, then Pn, the size distribution of failures obeys a power law which 

is close to -1 for all of the network structures examined. Below this critical value, the 

systems display an exponential distribution of failure size.  An instructive exercise can be 

carried out by having the probability of random failures, Pf, non-zero in only one of the 

coupled systems.  In this case it is found that if Pn is above the critical value and the 

coupling between the systems is also non-zero, the system in which there are no random 

failures also exhibits the characteristic power law size distribution (fig 3).  This means 

that systems that look robust can actually be vulnerable when coupled making analysis of 

the entire coupled system critical.  This cross system propagation is of course due to the 

coupling and can be seen in the synchronization of the failures in the two systems 
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Fig. 3 The probability distribution functions of the failure sizes for a coupled system in 
which only system 1 has random failures but system 2 still has a power law PDF and the 
combined system has a heavier tail then an uncoupled system would. 

 

Using a measure developed by Gann et al in [16] for synchronization, which is 

basically an average normalized difference between events in the 2 systems, we 

investigate this effect. For this measure, a value of 1 means the difference is effectively 

100% or no synchronization, while a value of 0 means all events are the same in the 2 

systems, or they are synchronized.  For the Demon model it is found that large failures 

are more likely to be "synchronized" across the two dynamical systems, figure 4, as seen 

by the decrease in the synchronization function (which is an increase in the actual 

synchronization) as a function of size. This means that in the coupled systems there is a 

greater probability of large failures and lesser probability of smaller failures. This in turn 

causes the power law found in the probability of failure with size to be less steep, figure 

5, with the coupling (ie the risk of larger failures is even higher in the coupled system). 

Above a certain value of the coupling, this effect saturates as the largest events are fully 

synchronized. The value of slope of the power law for the coupled square grid with 

parameters given earlier approaches ~ -0.8 in contrast to ~ -1.0 for the uncoupled system.   



 8 

0

0.2

0.4

0.6

0.8

1

1.2

100 101 102 103 104

cA = 0.0001
cA = 0.0007
cA = 0.0005

Sy
nc

 F
un

ct
io

n

Size  
Fig. 4 The synchronization function as a function of size for a coupled system and three 
values of the coupling coefficient.  Since 0 is fully synchronized and 1 is completely 
unsynchronized, it can be seen that the synchronization is stronger for larger failures and 
increases then saturates for larger values of coupling strength.  
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Fig. 5 PDF tail gets heavier as the coupling strength increases and then, as with the 
synchronization, saturates and stops changing. 

 

The other major impact of the coupling on the system characteristics is the 

reduction of the critical point. As the coupling increases, the critical value of Pn, and by 

extension the loading, rapidly decreases (Fig. 6).  This means that in an infrastructure 
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system which by itself is nominally subcritical, the coupling, even weakly, to another 

infrastructure can make the entire system critical. This reduction will be further discussed 

in the next section on mean field theory of the coupled systems. 
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Fig. 6 The critical point decreases rapidly as the coupling strength increases.  

Even the maximum coupling strength is much less then the propagation coefficient within 
one system but the critical parameter has fallen by more than a factor of three 

 

III. Mean field theory: steady state 
 
 Let us consider first the mean field theory for two coupled systems. This is a 

generalization of the calculation as done in Ref. [6]. Let O i( ) t( )  be the number of 

operating components in system i at time t normalized to the total number of components 

N(i). In the same way, we can define the normalized number of failed components, F(i)(t), 

and the failing ones, B(i)(t). The mean field equations for this coupled system are: 

  B 1( ) t +1( ) = Pf 1( )O 1( ) t( ) + Pn1( ) f 1( )O 1( ) t( )B 1( ) t( ) + c
1( )

κ
g2O

1( ) t( ) B 2( ) t( ) + F 2( ) t( )( )   (1) 

  F 1( ) t +1( ) = 1− Pr
1( )( )F 1( ) t( ) + B 1( ) t( )        (2) 
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O 1( ) t +1( ) = 1− Pf

1( )( )O 1( ) t( ) + Pr 1( )F 1( ) t( ) − Pn1( ) f 1( )O 1( ) t( )B 1( ) t( )

−
c 1( )

κ
g2O

1( ) t( ) B 2( ) t( ) + F 2( ) t( )( )
    (3) 

  B 2( ) t +1( ) = Pf 2( )O 2( ) t( ) + Pn 2( ) f 2( )O 2( ) t( )B 2( ) t( ) +κc 2( )g1O
2( ) t( ) B 1( ) t( ) + F 1( ) t( )( )  (4) 

  F 2( ) t +1( ) = 1− Pr
2( )( )F 2( ) t( ) + B 2( ) t( )       (5) 

  
O 2( ) t +1( ) = 1− Pf

2( )( )O 2( ) t( ) + Pr 2( )F 2( ) t( ) − Pn 2( ) f 2( )O 2( ) t( )B 2( ) t( )

−κc 2( )g1O
2( ) t( ) B 1( ) t( ) + F 1( ) t( )( )

  (6) 

Here κ ≡ N 1( ) N 2( ) , g1 is the fraction of nodes in system 1 coupled to system two, and g2 

is the fraction of nodes in system 2 coupled to system 1. Of course, these equations are 

consistent with the conditions: 

 O i( ) t( ) + B i( ) t( ) + F i( ) t( ) = 1        (7) 
In the limit with no failure triggers, Pf

(i) = 0, and for a steady state solution, the 

system of equations can be reduced to two coupled equations,  

 

1− Pn
1( ) f 1( )O 1( )"# $% 1−O

1( )( ) = a
1( )

κ
g2 1−O

2( )( )O 1( )     (8) 

1− Pn
2( ) f 2( )O 2( )"# $% 1−O

2( )( ) =κa 2( )g1 1−O
1( )( )O 2( )     (9) 

where 

  a i( ) =
c i( ) 1+ Pr

i( )( )
Pr

i( )        (10) 

 

It is important to note that the relevant parameter involves the ratio of the 

coupling between the systems to the repair rate. The reason for that is the particular form 

of rule 5) that assumes that a failure can be triggered by both failed and failing 

components in the other system. If only failing components had been considered, the 

relevant parameter would be the coupling. For real systems, a realistic rule should 

probably be in between these two. 
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If a(i) ≠ 0 and κ =1, then O(1) = 1 implies O(2) = 1, that is, the systems are 

decoupled. Therefore, to have truly coupled systems, system 1 must be in a supercritical 

state. Such case with a(i) ≠ 0 is more complicated to solve. 

First, we assume identical systems symmetrically coupled. That is, all parameters 

are the same for the two systems, f 1( ) = f 2( ) , 

€ 

a 1( ) = a 2( ) , κ = 1 and 

€ 

Pn
1( ) = Pn

2( ) .  This leads 

to identical solutions for the two systems in steady state. Therefore, we have the 

following solutions: 

O1eq

i( )
= 1, F1eq

i( )
= 0, B1eq

i( )
= 0        (11) 

and 

O2eq

i( )
=
1
ĝ
, F2eq

i( )
=

ĝ −1
ĝ 1+ Pr( )

, B2eq
i( )
=

ĝ −1
ĝ 1+ Pr( )

Pr      (12) 

The second solution is only valid for ĝ > 1 .  Here, 

€ 

ˆ g  is the control parameter and is given 

by 

 ĝ = Pn f +
c 1+ Pr( )

Pr
         (13) 

In Eqs. (11) and (12) the subindex eq indicate that is an equilibrium solution. 

The bifurcation point of the fixed point, ĝ = 1 , has been decreased from the decoupled 

case, Pn f = 1 , by a term proportional to c Pr . Therefore, in general this reduction is 

considerably larger than the magnitude of the coupling itself.  

We have tested the results from the mean field theory by comparing them with 

numerical results from some of the two-coupled identical systems networks listed in 

Table I. The results for the averaged number of operating components are shown in 

Fig. 7. Results have been obtained for fixed Pr = 0.001, c = 0.0005, Pf = 0.00001 (for 

system 1) and Pf = 0 (system 2), and we have varied the propagation parameter Pn. The 

numerical results show very good agreement with the mean field theory results as K 

increases. For K = 2, the systems are practically one-dimensional and the mean field 

theory is not really applicable.  
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The density of operating components is practically the same in both systems. This 

is logical because they are identical systems the only symmetry breaking feature is the 

probability of spontaneous failures that is zero in the second system. 
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IV. Mean field theory: time evolution 

We will continue to assume the two systems are identical, in this way, we can 

simplify the system of equations (1) to (6) to the following system: 

 

 B t +1( ) = Pn fO t( )B t( ) + cO t( ) B t( ) + F t( )( )    (14) 

F t +1( ) = 1− Pr( )F t( ) + B t( )      (15) 

O t( ) + F t( ) + B t( ) = 1       (16) 

We have eliminated the super-indices indicating the system because we assume 

that the two systems are identical at all times. This system of equations has two fixed 

points or equilibrium solutions, which are the same as before and given by Eqs. (11) and 

(12). For ĝ ≤ 1 , there is a single fixed point, but for ĝ > 1 there are two steady state 

solutions. We can study the stability of the solutions by linearizing Eqs. (14) to (16): 
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B t +1( )
F t +1( )
!

"#
$

%&
=

Pn f + 2c( )O
jeq
− Pn fBeq

− c 2cO
jeq

i( )
− Pn fBjeq

− c

1 1− Pr

!

"
#
#

$

%
&
&

B t( )
F t( )
!

"#
$

%&
  

 

At the standard operation equilibrium, no failures fixed point, the linearization becomes 

 

 
B t +1( )
F t +1( )
!

"
#

$

%
& =

Pn f + c c
1 1− Pr

!

"
#

$

%
&
B t( )
F t( )
!

"
#

$

%
&       (17) 

 

and the eigenvalues are 

 

γ 1+ =
1
2
1− Pr + Pn f + c + 1− Pr − Pn f − c( )2 + 4c( )     (18) 

γ 1− =
1
2
1− Pr + Pn f + c − 1− Pr − Pn f − c( )2 + 4c( )     (19) 

For ĝ = 1  the largest eigenvalue γ1+ goes through 1. This indicates that the fixed-

point solution Eq. (11) becomes unstable at this point. 

Similar calculation evaluating the linearization at the second fixed point, Eq. (12), 

shows that this second fixed point is stable for ĝ >1 .  The bifurcation is essentially a 

transcritical bifurcation and the stability is transferred from the fixed point Eq.(11) to the 

appearing second fixed point Eq. (12) as ĝ  increases through ĝ =1 . 

The left eigenvectors corresponding to the eigenvalues Eqs. (18) and (19) are  

 
!
Vi+ = γ i+ −1+ Pr ,c( ),

!
Vi− = γ i− −1+ Pr ,c( )      (20) 

We can use these eigenvectors to calculate the eigenvalues from measured quantities, 

because by applying them on the left of Eq. (17), we obtain 

 γ i+ =

−1+ Pr + γ i+ ,c( ) ⋅
B t +1( )
F t +1( )
$

%&
'

()

−1+ Pr + γ i+ ,c( ) ⋅
B t( )
F t( )
$

%&
'

()

     (21) 
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 γ i− =

−1+ Pr + γ i− ,c( ) ⋅
B t +1( )
F t +1( )
$

%&
'

()

−1+ Pr + γ i− ,c( ) ⋅
B t( )
F t( )
$

%&
'

()

     (22) 

From these expressions, we can derive a diagnostic to determine the eigenvalues from the 

numerical calculations. The expressions are 

 

γ i±[ ] = 12 1− Pr +
B t +1( )
B t( )

− c
F t +1( )
B t( )

#
$
%

± −1+ Pr +
B t +1( )
B t( )

− c
F t( )
B t( )

&

'
(

)

*
+

2

− 4
−1+ Pr( )F t( ) + F t +1( )

B t( )
c
,
-
.

/.

 (23) 

Here, we use the square brackets around the γ’s to indicate that these values will be 

obtained from numerical results. They are diagnostics and should not be confused with 

the analytical value of the eigenvalues. Note that for c = 0, these two eigenvalues are 

 

 γ 1−[ ] = B t +1( )
B t( )

and γ 1+[ ] = 1− Pr       (24) 

The first one is identical to the metric used in determining the criticality with 

respect to cascading events [11-13]. This metric is defined as 

λB t +1( ) = B t +1( )
B t( )

       (25) 

and measures the propagation of the failures. If λB is greater than 1, the number of 

failures increases with time and there is the possibility of a large cascading event. 

However, if λB is less than one, the failures will stop propagating and the failure size 

remains small. This measure has been introduced [17, 18, 19] on the basis of a branching 

process [20]. 

Having diagonalized the matrix in Eq. (17), one can solve the linear equations by 

iteration and one obtains 
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B t +1( )
F t +1( )
!

"#
$

%&
=

B 1( )
γ i+ − γ i−

γ i+ −1+ Pr[ ]γ i+t − γ i− −1+ Pr[ ]γ i−t

γ i+
t − γ i−

t

Oieq

!

"

#
#
#

$

%

&
&
&

   (26) 

From this solution, we can calculate the propagation of the failures 

 

λiB t +1( ) = B t +1( )
B t( )

=
γ i+ −1+ Pr[ ]γ i+t − γ i− −1+ Pr[ ]γ i−t
γ i+ −1+ Pr[ ]γ i+t−1 − γ i− −1+ Pr[ ]γ i−t−1

   (27) 

 

However, this is the solution of the linear problem, it only make sense for the 

initial phase of the evolution. The asymptotic values for t→∞  are meaningless. This 

ratio of failing components gives a measure of the propagation of the failures. Here we 

want to examine the relation between the cascading point, λib= 1, and the equilibrium 

bifurcation point, ĝ = 1 , which for c = 0 were the same. The important question is what is 

the proper diagnostic to measure the cascading threshold. 

From Eq. (27) the first two values for the rate of propagation of failures are 

 

λ1B (2) = Pn f + c         (28) 

λ1B (3) = Pn f + c +
c

Pn f + c
       (29) 

As one can see in the case of coupled systems, Eq. (27) gives λ1B  as an increasing 

function of t. If the first value of λ1B  is greater than 1, the cascade will go on. This is a 

sufficient condition for cascade threshold.  It is not a necessary condition, because in a 

few initial steps the number of failures may first decrease till λ1B  becomes greater than 

one and increase again. How many steps can λ1B  be less than 1 without extinguishing the 

cascade is not clear, it will depend on the size of the initial perturbation. If we assume 

that three steps are sufficient, we can use Eq.(29) as a typical parameter controlling the 

cascade, then the cascading threshold is 

 

 Pn f =
1
2
1+ 1− 4c( ) − c       (30) 
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Since c << 1 in the relevant cases, we can write this threshold in a more general 

way 

 Pn f = 1− µc         (31) 

where µ is a number of order 1 to be determined by numerical calculations.  

Here, we see that the effect of the coupling is to reduce the cascading threshold by a 

factor of the order of c, while the equilibrium bifurcation point was reduced by a larger 

term of the order c Pr . 

 

V. Mean field theory: numerical solution 

 

The mean field theory system of equations, Eqs.(14-16), can be solved 

numerically without any further assumptions. The nonlinear solutions of these equations 

will allow us to evaluate better the meaning of the analytical results described in the 

previous section and the validity of the linear approximations. Here, we consider systems 

with 104 components and the values of the couplings are c = 0.0005 and Pr = 0.001. For 

these parameters, the equilibrium bifurcation point, ĝ = 1 , is at Pnf = 0.4995. 

In Fig. 8, we have plotted the fraction of failing components as a function of the 

iteration for different values of Pnf . This plot gives a good description of the propagation 

of the failures. For all cases we have the used the same initial condition: 

Oinit = 1,Binit =
1
N
, and Finit = 0       (32) 

where N is the total number of components. In this case, if B goes below 10-4 the cascade 

has effectively extinguished because the system has 104 components. However, for an 

initial condition with n failures, the cascade is extinguished for B = n/N. 
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Fig. 8 The fraction of failing components as a function of the iteration for different values 
of Pnf. In this case the parameters are c = 0.0005 and Pr = 0.001 and the critical value of 
Pnf is about 1. 

 

In looking at this figure, it is clear that the cascading threshold is close to Pnf = 1. 

We have repeated the calculation for c = 0.05 and Pr = 0.1. These parameters are 

unrealistically large, and the steady state value of B is considerably larger than the initial 

value. In this case, below the cascading threshold the number of failures dips down well 

below 10-4 before rising again to the steady state value. The results are shown in Fig. 9.  

Because the equilibrium bifurcation point depends mostly on the ratio c/Pr, this change of 

parameters hardly changes the equilibrium bifurcation point. However, the cascading 

threshold depends on the value of c, therefore and as expected, the threshold for 

cascading is now close to Pnf = 0.9.  
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Fig 9 The fraction of failing components as a function of the iteration for different values 
of Pnf. In this case the parameters are c = 0.05 and Pr = 0.1 and the critical value of Pnf 
is about 0.9. 
 

From the previous analytical calculations and these numerical results we can draw 

two conclusions: 

1) The cascading threshold at which failures initially grow is not at the 

equilibrium bifurcation point. From the numerical calculations we can see that this 

threshold is consistent with Eq.(31). Therefore, the initial cascade propagation does not 

seem to be linked to the largest eigenvalue of the linear approximation to the mean field 

equations as it was for the decoupled systems. 

2) In the cases above the cascading threshold, the cascade starting near the 

unstable fixed point (11) proceeds up to a certain size, and then decreases as the transient 

converges to the stable fixed point (12). This is a transient and nonlinear system effect, 

which is not taken into account in the linearization that is valid only near the fixed point 

(11). 

The next step is comparing the calculated eigenvalues Eq. (23) with the analytical 

ones, Eqs. (16-19). We compare the measured eigenvalues from the numerical solution to 

the eigenvalues for the first fixed point because of the initial conditions taken here. For 
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γ1+ and Pnf < 1, the analytical and numerical values are very close to 1 and any difference 

would be small. Therefore, we limit the numerical comparison to Pnf > 1. 

In Fig. 10, we have plotted the γ1+ eigenvalue and the measured one, [γ1+ ] from 

the mean field numerical calculations for two values of Pnf . There the agreement is good. 

In Fig. 11, we have the same comparison for γ1–. Again the agreement is very good. In 

particular, the agreement is expected to be better for the very low number of iterations, 

because no finite size effects are present. Note that γ1– is the eigenvalue associated with 

the transition of the fixed point 1 to a fixed point 2. 

 
 Fig. 10 The analytic and computed γ1+ eigenvalues for two values of Pnf . 
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 Fig. 11 The analytic and computed γ1- eigenvalues for a number of values of Pnf . 

 

The next step is to compare the propagation of failures from the linear calculation 

with the solution of the mean field theory. In Fig. 12, we compare λB, as calculated 

numerically from the nonlinear mean field theory in Eq. (25), with the value in Eq. (27) 

obtained from the linear approximation Eq. (26). 

We see that the mean field theory gives a value for λB that increases with time. It 

is not constant as obtained from a branching process. Therefore this confirms the 

previous assumption that the cascade threshold can be calculated by Eq. (30). 
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Fig 12 Comparison of λB, as calculated numerically from the nonlinear mean field theory 
in Eq. (25), with the value in Eq. (27) obtained from the linear approximation. 

 

VI. Application and comparison to the Demon model  

 

Now that we have an understanding from the mean field theory of what should be 

measured, we can apply these measurements to the full dynamical model, Demon. In this 

case, the measurements will by necessity have a statistical character. 

The equilibrium bifurcation is linked to the γ1- eigenvalue. Therefore to get a sense 

of the equilibrium bifurcation point, we can apply the [γ1-] diagnostic, Eq. (23), to the 

Demon numerical calculations. The comparison between the analytical eigenvalue and 

the measured [γ1-] in Demon is shown in Fig. 13. The agreement is relatively good for a 

low number of iterations. As the number of iterations increases, finite size effects become 

important and the analytical and numerical results diverge, as we should expect. If 

instead of the linear analytical result we used the mean field theory result the agreement 

would be better. 
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Fig. 13 The analytic and Demon γ1- eigenvalues for a number of values of Pnf . 

 

The other relevant parameter is the rate of propagation of the cascades. We can 

compare λB in the Demon model with the one calculated from the mean field theory, 

Eq. (30). The result of this comparison is shown in Fig. 14. We can see that there is a 

basic agreement. 

Both comparisons are poorer for low values of γ1- and λB, because in this 

parameter region the data from Demon are scattered. The reason for that is that there is a 

very small number of cascading events and the statistical evaluation is poor. 



 23 

 
Fig 14 Comparison between Demon and nonlinear mean field (Eq. (30)) λB for a number 
of values of Pnf  

 

 

VII. Conclusions 

 
The critical infrastructure systems upon which modern society relies often exhibit 

characteristics of complex dynamical systems operating near their critical point including 

heavy, power law, tails in the failure size distribution and long time correlations. We as a 

matter of course take their smooth operation for granted and are typically shocked when 

one of these systems fails despite the fact that these failures are a completely inevitable 

result of the complex dynamical nature of the system.  Though failures are inevitable, one 

can design and operate the systems to reduce the risk or at least be aware of what the risk 

is, making understanding these systems a high priority for ensuring security and social 

wellbeing. While modeling these individual systems themselves is a challenging and 

worthwhile exercise, in the real world they usually do not exist in a vacuum instead being 

coupled, sometimes very tightly, to one or more other complex infrastructure systems. 

This coupling can lead to new behavior including modifications of the critical points and 

the weight of the tails.  Realistically modeling these coupled infrastructure systems in a 



 24 

dynamic manner is a daunting task outside out current capabilities. For example, only 

recently has a simplified model of the electric power grid alone of cascading overloads 

and complex dynamics been validated with observed data [21].  Therefore simpler 

models that can capture some of the important characteristics have a significant role to 

play in understanding the risks associated with the structure and growth of these critical 

systems. Even the simple modeling of these coupled system leads to a very large 

parameter space that must be explored with different regions of parameter space having 

relevance to different coupled infrastructure systems. Within each of these parameter 

regimes there is a rich variety of dynamics to be characterized.  

This chapter has attempted to look at a simple model, Demon, of coupled 

infrastructure systems that can both be simulated and attacked analytically using mean 

field theory.   We have found that in the region of parameter space we have explored, the 

coupling between the systems reduces the critical point (the propagation parameter in this 

model which is related to the system loading in the real world) and makes the tail heavier.  

The reduction in the critical point is found both in the mean field theory and the Demon 

model.  This reduction has serious implications for the real world as we load the systems 

more heavily and as the coupling becomes ever tighter, suggesting that the probability of 

large failures is likely to become more probable. The mean field theory does a better job 

of matching the numerical results when taken to higher order and is even able to capture 

the general time behavior of the propagation metric λ. This metric is one which can in 

principle be measured in the real world [22] as a state estimator.  Using this it may be 

possible to give a statistical estimate of the risk of failure of various sizes, a needed 

function given the non-normal nature of these distribution functions.  In addition, it has 

been found that the PDF of the failure sizes gains a heavier tail, with the slope going from 

~ -1.0 to ~ -0.8.  While this may not seem like a major change, because this is a power 

law it implies a significantly higher relative risk of the larger failures which are the 

failures that dominate the “cost” to society.   These models find that even with weak 

interaction one cannot always safely ignore coupling.  

Characterizing the dynamics in the different regimes is more then an academic 

exercise since as we engineer higher tolerances in individual systems and make the 

interdependencies between systems stronger we will be exploring these new parameter 
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regimes the hard way, by trial and error. Unfortunately error in this case has the potential 

to lead to global system failure. By investigating these systems from this high level, 

regimes to be avoided can be identified and mechanisms for avoiding them can be 

explored. These general relationships are then available to be verified either with more 

physically based models or with real data. 
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Table I Network properties 
 

Type K Number of nodes 

Open 3-
branch 
Tree 

2 3070 

Closed 3-
branch 
Tree 

3 3070 

Open 5-
branch 
Tree 

4 190 

Square 3.96 10000 

Hexagon 5.9 4681 
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