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North American blackout time series statistics
and implications for blackout risk

Benjamin A. Carreras, David E. Newman, Ian Dobson, Fellow IEEE

Abstract—We use North American Electric Reliability
Corporation historical data to give improved estimates of
distributions of blackout size, time correlations, and waiting
times for the Eastern and Western interconnections of the North
American grid. We then explain and estimate the implications of
the power law region (heavy tails) in the empirical distribution
of blackout size in the historical data for the Western
interconnection. Annual mean blackout size has high variability
and the risk of large blackouts exceeds the risk of medium size
blackouts. Ways to communicate blackout risk are discussed.

Index Terms—Power transmission reliability, risk analysis.

I. INTRODUCTION

The Disturbance Analysis Working Group of the North
American Electric Reliability Corporation (NERC) published
online records of blackout size and duration that give a histor-
ical time series of reportable blackouts in North America. This
NERC data is foundational for quantifying and understanding
blackout risk. We use 22 years of this data from 1984 to 2006.
The data includes the power shed, number of customers dis-
connected, and duration of reportable blackouts. In this paper
we analyze only the load shed and customers disconnected
because of uncertain interpretation and missing data for the
blackout durations. The data arise from government black-
out reporting requirements. The thresholds for a reportable
blackout include uncontrolled loss of 300 MW or more of
firm system load for more than 15 minutes from a single
incident, load shedding of 100 MW or more implemented
under emergency operational policy, loss of electric service to
more than 50 000 customers for one hour or more, and other
criteria detailed in the United States Department of Energy
form EIA-417. The data has some unevenness, so that very
precise conclusions are elusive, but general conclusions can be
drawn that describe the nature of electric power transmission
system reliability. Note that the NERC data and this paper do
not address the more common and smaller distribution system
blackouts.
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Starting in January 2000 [1], analyses or presentations of
portions of the NERC data set have been published by several
research groups [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. All these research groups report a heavy
tail in the distribution of blackout size. Similar results appear
in historical blackout records from other countries [16]. The
heavy tail of the distribution of blackout size shows the sig-
nificant contribution of large blackouts to blackout risk as ex-
plained, for example, in [5], [13]. Possible trends or changes in
blackouts over time are variously analyzed in [6], [8], [9], [10].
Seasonal variations are analyzed in [7], [8], [9], [10]. A larger
data set is analyzed for North America in [10]. Distributions of
the times between blackouts are suggested in [5], [7] and eval-
uated in [10]. Imperfections in the NERC data are discussed
more extensively in [12]. Data mining is applied in [11].

This paper addresses the following general questions using
the NERC data:

• What is the statistical variation in blackout size?
• How can we usefully quantify blackout size with statistics

and communicate these statistics?
• Are mean blackout sizes useful statistics?
• Do large blackouts have greater risk than smaller black-

outs?
• Do the initiating events that lead to blackouts occur at

random times?
• To what extent are blackouts correlated with past black-

outs?

In particular, we make the following contributions to further
analyze and understand the NERC data and its implications:

• Sections II and III take advantage of the larger data set
and correct the size of several large blackouts in order
to obtain better estimates of the power law exponents
and long-time correlations for blackout size and to sepa-
rately analyze the Eastern and Western interconnections.
In particular this improves on initial work in [5] for
the power law exponents and the long-time correlations
and with respect to [4] for the power law exponents
and the separate analyses of the Eastern and Western
interconnections.

• Section IV obtains a better description of the statistics of
the times between blackouts as a novel nonhomogeneous
Poisson process, corrects some misconceptions in the
literature, and concludes that the new model is consistent
with randomly occurring blackout initiating events.

• Section V presents a new way to quantify the variability
of mean blackout size directly from the data, finds the
mean blackout size to be highly variable, and discusses
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the consequences for blackout statistics, including advice
to avoid using mean blackout size statistics.

• Section VI estimates in a novel, data-driven way the risk
of various sizes of blackouts for the Western interconnec-
tion. While overall transmission grid reliability is good,
it is important to maintain this reliability, and to quantify
which sizes of blackouts pose the greater risk. In this case,
the risk of large blackouts exceeds the risk of medium-
size blackouts.

• Section VII briefly discusses how to communicate black-
out risk to technical and non-technical audiences.

Since the results are sensitive to the largest blackouts,
we corrected the NERC load shed data for the Western
interconnection for the largest blackouts. We examined NERC
annual reports [17], [18] and an expert account of the 1996
blackout [19] and used the larger load shed in these sources for
four of the largest blackouts as detailed in Table V at the end
of the paper. (These sources are more credible than the NERC
data, partly because the NERC data reports have to be filed
quickly after the blackout by multiple parties.) No changes to
the Eastern interconnection NERC data were made.

One general point about observed blackout data is that
because it includes large blackouts that are rare but conse-
quential, there is inherently a shortage of data that limits the
precision of the conclusions. This highlights the importance of
this paper analyzing a longer data set and correcting the larger
blackout data. Also, some of the methods we apply (such as
Clauset’s method and bootstrap resampling) can test for or
circumvent the paucity of data.

II. DISTRIBUTION OF BLACKOUT SIZE

The observed distribution of blackout size, such as in terms
of load shed or customers disconnected, is is one of the most
foundational descriptions of transmission grid reliability. There
are several reasons for the centrality of the distribution of
blackout size for power transmission reliability, First, large
blackouts cannot be neglected; although rare, large blackouts
have a large impact on society as well as the most conse-
quential regulatory and reputational impacts on the power
industry. We show in section VI that the risk of large blackouts
(here defined as more than 1000 MW shed) can exceed the
risk of medium-size blackouts. This arises from the heavy-
tailed behavior in the distribution of blackout size that we
quantify with power-law exponents in this section; blackouts
do become rarer as their size increases, but at a rate slower
than the rate at which the cost of blackouts increases with
size. Second, although it is easier to mitigate small blackouts
since they are much simpler, and some mitigation measures for
small blackouts also mitigate large blackouts, other mitigation
measures that mitigate small blackouts, can, sometimes after
a delay, increase the probability of large blackouts [13].
Therefore the blackout mitigation problem is best framed as
jointly mitigating blackouts of all sizes, and this objective is
naturally expressed as maintaining or shaping the distribution
of blackout size. Third, as shown in section V, there can be
pitfalls in attempting to summarize the distribution of blackout
size with statistics such as the mean blackout size.

This section advances the state of the art by quantifying the
power-law exponents of the distribution of blackout size with
more data and better methods. In particular, the availability of
more data and the correction of the data for the largest black-
outs in the Western interconnection enables better calculation
of the power law exponents of the distribution of blackout size
separately for the Eastern and Western interconnections.

The distribution of blackout size can be shown as a com-
plementary cumulative distribution function, abbreviated as
CCDF. The CCDF is the probability that a blackout is larger
than a given size as a function of blackout size. In particular,
the CCDF evaluated at blackout size x is the integral of the
probability density function from x to infinity. The CCDF
is estimated from data by ordering the blackouts in order
of decreasing size, plotting the rank of the blackout in this
ordering against the blackout size, and renormalizing the
vertical scale so that it indicates probability. While it easier to
compare the relative probabilities of different blackout sizes
with the probability density function, estimating the probabil-
ity density function requires decisions about binning of data
that introduces some arbitrariness. Therefore in this paper we
use the CCDF and the rank function, the unnormalized version
of the CCDF. Fig. 1 shows rank functions for blackout size
measured by load shed.

Fig. 1. Rank of blackout load shed. North American and Western data are
multiplied by 104 and 102 to separate the plots.

Probability distributions of blackout size show power law
regions. A power law region is a substantial interval of
blackout size over which the blackout probability changes as
a power function of the blackout size. A log-log plot of the
probability distribution over a power law region shows as a
straight line. Since CCDFs are integrals of probability density
functions, the exponent of the power law and the slope of the
straight line depends on whether the probability distribution
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is specified as a probability density function or a CCDF. That
is, over some range of x, if CCDF F (x) ∼ x−α, then the
corresponding probability density function f(x) ∼ x−α−1.
This paper quotes power law exponents as the exponent α for
the CCDF.

Figs. 1 and 2 show the CCDF with power law fits for the
distribution tails. The combined results for North America also
include data for the Texas grid ERCOT.

Fig. 2. Rank of blackout number of customers without power. North
American and Western data are multiplied by 104 and 102 to separate the
plots.

We use two methods to compute the power law exponents of
the rank functions of blackout size, and the results are shown
in Tables I and II. The power law tail region to be determined
from the data is all the data with blackout size x greater than
xmin. The first method judges xmin by inspection and fits a
line to the data in this region. This method is simple but has
subjective aspects. The second, more accurate and objective
method is due to Clauset et al. [15]. The Kolmogorov-Smirnov
distance D between the CCDF of the data for x greater than
xmin and the pdf we are trying to fit (x/xmin)

−α varies with
the choice of xmin. In Clauset’s method, the distance D is
calculated for a range of choices of xmin and then xmin is
chosen to minimize D. Then a maximum likelihood estimator
is used to estimate α.

Table I shows the exponents of the power tails. For the
Eastern interconnect the rank function of the load shed shows
a power tail over two decades with exponent 0.94, whereas
the Western interconnect shows a power tail with exponent
1.02. The North American exponent for load shed of 1.07
agrees with [10]. For all cases the rank function of the
customers disconnected has a power law tail with exponent
approximately 0.9.

Clauset’s method has a goodness of fit parameter p, where
approximately p > 0.1 indicates a good fit. All the exponents

TABLE I
POWER LAW EXPONENTS FOR LOAD SHED

North America Western Eastern

Fit tail by inspection:
power law exponent α 1.07 1.02 0.94

Method of Clauset:
power law exponent α 1.16± 0.10 0.98± 0.10 0.82± 0.06

xmin 850. 260. 245.
D 0.076 0.07 0.14
p 0.45 0.68 0.04

tail data points n 123 102 204
total data points 512 185 307

TABLE II
POWER LAW EXPONENTS FOR CUSTOMERS DISCONNECTED

North America Western Eastern

Fit tail by inspection:
power law exponent α 0.95 0.88 0.91

Method of Clauset:
power law exponent α 0.82± 0.05 0.92± 0.11 0.84± 0.07

xmin 90 000 82 000 110 000
D 0.057 0.44 0.078
p 0.59 0.99 0.37

tail data points n 252 70 153
total data points 467 138 314

have a good fit, with the exception of the exponent for the
power shed for the Eastern interconnection. This poorer fit can
be attributed to insufficient large blackout data to guarantee
the statistical validity of the fit. Uncertainties on all these
exponents are still significant. We note that Hines et al.
[9] apply Clauset’s method to 22 years of North American
blackout size data normalized to year 2000 according to
population size ratio and obtain for power shed xmin = 1012
MW and α = 1.2, and for number of customers disconnected
xmin = 291 000 and α = 1.14. And Clauset analyzes 18 years
of North American blackout data on number of customers
disconnected and obtains xmin = 230 000 and α = 1.3 [15].

The importance of the power law behavior in the distribution
of blackout size can be seen by contrasting the power law
behavior with the behavior of distributions of blackout size that
decrease exponentially or faster than exponential as blackout
size increases [13]. An exponential decrease in probability
implies that the probabilities of the largest blackouts are so
vanishingly small that they would not occur in practice1.
Blackout risk is the product of blackout probability and
blackout cost. Generally, as blackout size increases, blackout
probability decreases and blackout cost increases, and the
behavior of blackout risk depends on which factor dominates.
Blackout costs are uncertain, but the direct blackout costs
increase at least linearly with blackout size [13]. In the
case of blackout size probability decreasing exponentially
with increasing blackout size, the blackouts get rarer much
faster than blackout costs increase, so that the risk of large
blackouts is very small. In contrast, in the power law case,

1The popular press describes this condition as a “perfect storm,” even when
it is known that the phenomenon is heavy tailed and that extreme events are
to be expected occasionally.
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with increasing blackout size, the blackouts get rarer slowly
enough that the increased blackout costs can make the risk
of large blackouts exceed the risk of small blackouts [13]. To
quantify these effects, section VI estimates this risk based on
data.

There is some variation in usage in terms for power law
regions. In both probability and physics, a power law tail
in a probability density function f(x) with an unbounded x
variable indicates a power law or an asymptotic power law as
x tends to infinity. However, if the distribution is bounded in
x, physicists may also use the term power law tail, assuming
that it is obvious that the power law region is limited, whereas
a probabilist would be likely to avoid this term. All probability
distributions for blackout size are bounded by the largest
possible blackout in which entire interconnection blackouts
out.2

The power law region of the distribution of blackout size has
been explained using complex systems concepts of criticality
and self-organization [5], [20], [16], [21], [13], [22], [14].

III. LONG-RANGE TIME CORRELATIONS

As complex systems evolve they can show correlations over
various time scales. For example, a large blackout always leads
to grid upgrades, and these upgrades can affect the blackouts
for some considerable time in the future. These correlations
can be detected as autocorrelation functions decaying slowly in
a power law fashion, and the power law can be measured with
Hurst exponents3 [23], [24]. A Hurst exponent greater than 0.5
signifies a positive correlation between blackouts at one time
and blackouts at all other times, a Hurst exponent less than 0.5
indicates negative correlations, and a Hurst exponent equal to
0.5 indicates no correlations. A positive or negative correlation
is sometimes referred to as system memory. It means that the
memory of a blackout is retained in the operational procedures
or engineering upgrades which will then impact failures at later
times. Our paper [5] previously found moderate long range
time correlations (Hurst exponent 0.6) in the NERC blackout
data.

To improve on [5], we recompute for the larger data set
the Hurst exponents that describe the long-time correlations

2Historical data for North American blackouts does not show the nature of
the blackout distribution near the largest possible blackout because blackouts
of the entire or almost the entire interconnections have not occurred. It is not
clear whether these blackouts are so rare that they have not happened over
the time period that the interconnections have existed, or whether they are
extremely unlikely to happen. Theory models for cascading with subcritical
propagation show a power law region for intermediate blackouts and an
exponentially decaying region for the largest blackouts [16] However, larger
probabilities of the largest blackouts are also possible in these theory models
if the propagation is larger.

3The long-range dependence in a time series can be quantified with the
rescaled range R/S statistic. One first integrates the time series, and then
computes the R/S statistic which is the range of blocks of m successive
points divided by the block standard deviation. The idea is to quantify how
this rescaled range R/S statistic grows as the time lag m increases. For a
time series with an autocorrelation function that has a power law tail, the R/S
statistic scales proportionally to mH , where H is the Hurst exponent. That
is, H is the asymptotic slope on a log-log plot of the R/S statistic versus the
time lag m. Formulas for the R/S statistic are in the appendix of [5].

Fig. 3. R/S plots for power shed. North American and Western data are
multiplied by 104 and 102 to separate the plots.

Fig. 4. R/S plots for customers. North American and Western data are
multiplied by 104 and 102 to separate the plots.

in the blackout time series.4 The Range over Scale plots
shown in Figures 3 and 4 show an algebraic scaling region

4Though more points would always be useful, there are enough points to
allow for approximately a decade and a half of the asymptotic power law
region for the calculation of the Hurst exponent. It is generally agreed that
anything over a decade can produce a valid exponent. The R/S method for
calculating the Hurst exponent has small uncertainty for the low lag points
since they are averaged over many samples, while the uncertainty grows for
the higher lag. The last point has only one sample (the entire length) and is
therefore not included in the exponent calculation.
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TABLE III
HURST EXPONENTS AND WAIT TIME PARAMETERS

North America Western Eastern

Hurst exponent; power shed 0.57 0.46 0.60
Hurst exponent; customers 0.52 0.53 0.62
wait time parameter β0 0.029 0.015 0.016
wait time parameter β1 0.18 0.034 0.13

for time lags above 100 days. Table III shows the Hurst
exponents for the Eastern and Western interconnections. The
Eastern interconnect shows the presence of mild positive
long range time correlations for power shed and customers
disconnected. The presence of these mild positive correlations
is consistent with a long-term dynamical effect by which
blackouts, including those far in the past, might influence
the present. One mechanism for such a long-term dynamical
effect is the complex system self-organization in OPA models
of series of blackouts [20], [16], [21]. The long range time
correlations for the Western interconnect are weaker and less
conclusive.

IV. WAITING TIMES

Waiting times are the times between successive blackouts,
and their statistics indicate the nature of the blackout initi-
ating events. In particular, identifying non-random statistical
patterns in blackout-initiating events could inform their mit-
igation. In this section we improve the statistical modeling
of blackout-initiating events, resolve questions raised in the
literature, and find no evidence of non-randomness. Modeling
the statistics of blackout initiating events is also essential for
cascading failure simulations.

These statistics were first suggested to be exponential with
a constant rate [5], and this approximation was questioned in
[7], [10]. In this paper, since the number of blackouts is slowly
changing, we assume that the rate of the exponential β is
slowly changing over the blackout time interval with a uniform
distribution over the interval [β0, β1]. Then the probability
distribution of wait time W becomes

fW (t) =

∫ β1

β0

βe−βt
1

β1 − β0
dβ (1)

And the rank function for W is

FW (t) =

∫ ∞
t

fW (τ)dτ =
e−β0t − e−β1t

(β1 − β0)t
(2)

The values of β0 and β1 shown in Table III are obtained by
fitting the rank function for W to the waiting times in the data
as shown in Figure 5. We can see that the waiting time data
is consistent with an inhomogeneous Poison process.

The change β1 − β0 is smaller for the Western intercon-
nection. This reflects random triggers with a possible small
increase in frequency in the last few years. The Eastern inter-
connect shows a stronger time dependence of the frequency.
The present data is consistent with random set of triggers,
with frequency changing with time. The assertions in [7] about
the non-random origin of the triggers arise from imposing a
homogeneous Poisson process model that is incompatible with
the data.

Fig. 5. Distributions of waiting times between blackouts.

Reference [7] claims that self-organized-criticality-type
dynamics should exhibit exponential decay in the waiting time
distribution. However this claim is not correct: the complex
systems properties of blackouts such as self-organization or
criticality are independent of the statistics of the waiting
times; properties of the complex system are distinct from the
properties of the system inputs [25].

V. VARIABILITY OF MEANS

The heavy tail in the probability distribution of blackout size
implies high variability in blackout size and that estimates for
mean or average blackout size can fluctuate excessively. This
section analyzes the NERC data for load shed in the Western
interconnection to quantify the excessive fluctuation. This
leads to our recommendation that mean values for blackout
size should be avoided.

The processing of the data is now described. In order
to establish a uniform minimum blackout size of 100 MW,
blackouts smaller than 100 MW were omitted from the data.
This left 111 blackouts observed over 22 years. There are on
average five blackouts larger than 100 MW per year.

The estimated mean is the sum of the samples divided by the
number of samples. Under suitable conditions, the estimated
mean becomes close to the actual mean as the number of
samples becomes large enough. In the case of blackouts, there
is always a blackout of maximum size (the entire interconnec-
tion blacks out), Therefore, in theory, estimates of the mean
eventually converge to the mean as the number of samples
becomes infinite. However, in practice, this convergence may
require a very large number of samples, and there can be
substantial variation in the estimated mean for practical sample
sizes. For real blackout data, it is impractical to wait too long
for enough blackout samples to accumulate. (For simulated
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blackouts, there are similar difficulties with excessively long
run times.)

We estimate the mean and standard deviation of load shed
from the Western interconnection NERC data. The raw data
of 111 load shed amounts was not directly used to estimate
the mean and standard deviation because of the high vari-
ance in these quantities for the relatively small numbers of
observed blackouts ... indeed this is exactly the problem under
investigation! Instead, we use a nonparametric bootstrap [26]
to generate 200 000 samples of blackout load shed.5 (The
200 000 samples correspond to 40 000 years of operation of the
WECC.) The mean of the 200 000 samples is approximately
1500 MW and the standard deviation is approximately 4500
MW. This procedure may well underestimate the mean and
standard deviation since the fit of the CCDF assigns a very
small probability to blackouts in excess of the largest observed
WECC blackout of 30 390 MW. Note that it is assumed that
the distribution of load shed does not change over the 22-year
period of observation.

Having estimated the mean and standard deviation of the
distribution of load shed, it is now feasible to estimate the
standard deviation of the estimated mean of a given number
of independent load shed samples. Suppose that the blackouts
are observed for y years. Since there are 5 reportable blackouts
per year, there are 5y samples of load shed in y years. The
standard deviation of the load shed is 4500 MW. It follows that
the standard deviation of the estimated mean of 5y samples is
4500/

√
5y MW. For example, by setting y = 1 we obtain that

the annual mean blackout load shed has standard deviation
of about 2000 MW. It takes 50 years of observation, or
250 blackout samples, to reduce the standard deviation of
the estimated mean to 280 MW. The point is that it takes
many years to reduce the standard deviation of the estimated
mean load shed enough to make the estimated mean load shed
useful.

To further illustrate this point, we assume one or ten years
of observation (that is, 5 or 50 samples) and use the generated
load shed samples to generate an empirical distribution of
mean load shed.6 The estimated annual mean load shed is
distributed so that:

• with probability 0.66, 0 < annual mean < 1000.
• with probability 0.15, 1000 < annual mean < 2000.
• with probability 0.09, 2000 < annual mean < 3000.

Recalling that the actual mean is approximately 1500 MW, the
annual mean is estimated to be within 500 MW of the actual
mean only in 15 percent of cases.

The estimated 10-year mean load shed is distributed so that:

• with probability 0.28, 0 < 10-year mean < 1000.
• with probability 0.53, 1000 < 10-year mean < 2000.
• with probability 0.16, 2000 < 10-year mean < 3000.

5The details of the bootstrap are that we form the empirical CCDF by
ranking the blackouts in decreasing size and dividing the rank by the number
of blackouts, fit a function F to the empirical CCDF using linear interpolation,
and then generate the samples of blackout load shed by applying F−1 to
samples from a uniform distribution between 0 and 1.

6We avoid using the central limit approximation of normality for this
calculation since this may fail for heavy tailed distributions.

The 10-year mean is estimated to be within 500 MW of the
actual mean in only slightly more than half the cases.

To summarize, to reliably and accurately estimate the mean
load shed in Western interconnection blackouts from obser-
vations would require several decades of observation. This is
impractically long. Moreover, even if the annual mean were
estimated reliably and accurately, it would not be very useful
since there is such large variability of blackouts about the
mean that the mean value is not representative.

According to Table I, the power law exponent α for the
Eastern interconnection blackout load shed is less than the
power exponent for Western interconnection blackout load
shed so that the distribution of load shed for the Eastern
interconnection has a slightly heavier tail than the Western
interconnection. Since a heavier tailed distribution has higher
variability of means, the result in this section that Western
interconnection mean load shed is highly variable and unrep-
resentative also applies to the Eastern interconnection.

CCDF or equivalent distributions are good ways to present
extreme events statistics. These distributions are not a single
index and the raw data is preserved. There is sometimes a push
to summarize highly variable data with one number, even when
this does not make sense and modern information technology
does not require the reduction to one number.

We comment on the exclusion of large events from highly
variable data. It is a common practice to exclude large events
when gathering data or computing reliability indices. This
practice has important implications when assessing extreme
event risk. The criteria for which large events are excluded
vary significantly between organizations, and include whether
the outage was planned, blackout size or duration, and the
cause of the blackout such as storms, or the history of recent
blackouts. Moreover, the extreme events are inconsistent with
the most common probability models that lack heavy tails, and
are sometimes wrongly excluded because they do not fit the
assumed but wrong models.

Some commonly used indices are annual mean values. One
of the reasons for the exclusion is that if the extreme events
are not excluded, the annual means are highly variable. The
high variability of an index, unless explained as an expected
consequence of the heavy tailed phenomenon being assessed,
can produce problems of perception and interpretation. We
recommend that all data be carefully collected without ex-
ceptions, and that processing and display of the data should
describe any filtering or censoring of the data.

Cascading outages result from initial outages that then
propagate across the grid. One way to avoid the problems
of metrics directly characterizing heavy tailed distributions of
blackout sizes is to instead characterize both the initial outages
and the average propagation of the outages. For transmission
line outages, branching process models can predict the black-
out size distribution from the initial outages and the average
propagation. Moreover, the average propagation does not have
heavy tails and can be estimated from one year of outage data
from a large utility [27]. Extensions to similarly quantify load
shed statistics are being pursued [28], [29], [30].

The high variability in blackout size and the consequent
high variability in estimated mean blackout size is an intrinsic
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property of blackouts that arises from the nature of cascading
events. We suggest that power transmission grid reliability can
best be maintained by metrics and policies that account for this
observation. In particular, despite their widespread use in the
blackout literature, mean blackout size and other statistics that
compute an average such as conditional value at risk are too
highly variable to be useful or representative statistics. If there
is any doubt about this conclusion for blackouts in a particular
country or region, it is straightforward to apply the bootstrap
sampling described in this section to the appropriate blackout
size data to quantify the variability of the statistic.

VI. RISK OF LARGE BLACKOUTS

This section roughly estimates the risk of medium size
and large Western interconnection blackouts based on
NERC historical data. For this calculation, risk is defined
as probability times cost, medium size blackouts have load
shed between 100 MW and 1000 MW, and large blackouts
have load shed greater than 1000 MW. We make the
simple and pragmatic assumption that direct blackout costs
are proportional to energy unserved. Energy unserved is
load shed times blackout duration. Analysis of the NERC
North American data suggests the rough and conservative
approximation that large blackout duration is proportional to
the square root of load shed, as stated in [31] and summarized
in the Appendix. This implies that blackout cost is proportional
to load shed to the power 1.5. Determination of blackout
costs poses difficulties that impact the estimation of risk and
further progress in determining blackout costs would repay
systematic data collection and further investigation [12], [13].

Suppose that the blackout load shed is s MW and that
blackout direct cost C is proportional to sγ . Let f(s) be the
probability density function of blackout size and F (s) be the
cumulative density function of blackout size. These probability
densities are conditioned on a blackout happening. Then, given
that a blackout happens, the probability that a blackout has
load shed between s1 MW and s2 MW is

P [s1, s2] =

∫ s2

s1

f(s)ds = F (s2)− F (s1). (3)

If blackouts occur with frequency b per year, then the expected
number of blackouts per year between s1 and s2 MW is
bP [s1, s2].

Let R[s1, s2] be the risk of a blackout having load shed
between s1 MW and s2 MW. Risk is probability times cost.
Therefore, given that a blackout happens, the risk of a blackout
with load shed between s1 MW and s2 MW is

R[s1, s2] =

∫ s2

s1

f(s)sγds. (4)

This can be rewritten in terms of the cumulative density
function as

R[s1, s2] = F (s2)s
γ
2 − F (s1)s

γ
1 −

∫ s2

s1

F (s)γsγ−1ds. (5)

The cumulative density function has better properties than the
probability density function, so (5) may have some advantages
over (4) when computed from data.

TABLE IV
APPROXIMATE RISK OF MEDIUM AND LARGE BLACKOUTS

Risk (arbitrary units)
cost exponent γ largest blackout medium blackout large blackout

1.5 30 390 MW 60 700
1.0 30 390 MW 3 8
1.5 150 000 MW 60 3300
1.0 150 000 MW 3 16

Note: Medium blackouts range between 100 MW and 1000 MW.
Large blackouts exceed 1000 MW.

The first line of Table IV shows the result of roughly
estimating the risk of medium and large blackouts from the
NERC WECC data with (5). As explained above, the best
currently available, but uncertain approximation γ = 1.5 is
used for the cost exponent. Since the cost has arbitrary units,
so does the risk. The largest blackout in the NERC WECC data
is 30 390 MW, so the first line of Table IV reflects the actual
historical data. It can be seen in the first line of Table IV that
the risk of a large blackout is an order of magnitude greater
than the risk of a small blackout. Note that the calculation is
conservative in only accounting for direct costs; the indirect
costs of large blackouts can sometimes be very large.

The first line of Table IV is the best rough estimate available
of the relative risks of medium and large blackouts, but the risk
estimates are very sensitive to the assumptions. Lines 2, 3, and
4 of Table IV examine some changes in these assumptions.

Line 2 of Table IV changes the cost assumption in a
conservative way that reduces the risk. The cost assumption
for line 2 is that blackout cost is proportional to the load
power shed so that γ = 1.0. The effect of this change in the
cost assumption is that the risk reduces by approximately an
order of magnitude, and that the risk of large blackouts is
approximately double the risk of the medium blackouts.

The risk estimates also depend strongly on the largest
blackout that occurs in the data. The largest possible blackout
of WECC blacks out all of WECC, and has size approximately
150 000 MW. A hypothetical (and hopefully never to be
experienced) blackout of 150 000 MW was added to the
NERC historical data set to illustrate the sensitivity of the
risk estimates to also observing the largest possible blackout.
The results are shown in Lines 3 and 4 of Table IV. Including
a hypothetical largest possible blackout in the data increases
the estimated risk of the largest blackouts by a factor of two
to five.

The risk estimates of medium and large blackouts are rough
approximations, with significant uncertainties that depend on
assumptions about cost and which of the largest blackouts
occur in the data. The estimates could be improved in the
future, but it is already plausible to conclude that the historical
data shows that the risk of large blackouts exceeds the risk of
the medium size blackouts, and possibly by a large amount. It
is clear that further work to better determine the cost of large
blackouts would improve the risk estimation. Our analysis is
not inconsistent with the analysis of [32] that finds momentary
interruptions to be important, because [32] does not address
the largest blackouts. In [32], the surveys used to assess
blackout cost do not ask about extended blackouts, and the
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larger blackout data is eliminated together with outlier data
when trimmed means are computed.

According to Table I, the power law exponent α for the
Eastern interconnection blackout load shed is less than the
power exponent for Western interconnection blackout load
shed so that the distribution of load shed for the Eastern
interconnection has a slightly heavier tail than the Western
interconnection. Therefore the result in this section that the
risk of large blackouts exceeds the risk of medium size
blackouts for the Western interconnection also applies to the
Eastern interconnection.

VII. COMMUNICATING BLACKOUT RISK

Since transmission system blackouts greatly impact the
public, business, policy makers, regulators, and the entire
power industry, and the understanding and perception of
blackout risk influences everyone’s response to blackouts, it
seems appropriate not only to highlight the importance of the
communication of blackout risk, but also to make a brief start
in this section towards improving its communication to both
non-technical and technical audiences. The effective commu-
nication of blackout risk can minimize misunderstanding and
undue exaggeration or undue minimization of the risk.

For an initial approach, we suggest that blackouts be divided
into small, medium, and large blackouts. For example, in the
Western interconnection, one could consider small blackouts
as less than 100 MW load shed, medium blackouts as between
100 and 1000 MW load shed, and large blackouts as more than
1000 MW load shed. For the 22 years of blackouts recorded by
NERC, the probability of a Western interconnection blackout
being greater than 100 MW is 0.8. Consider the CCDF of load
shed shown in Fig. 6. This distribution is conditioned on the
load shed being greater than 100 MW. According to Fig. 6,
given that a blackout of more than 100 MW occurs (that is, the
blackout is not small), the probability of medium blackouts is
0.74 and the probability of large blackouts is 0.26.

The main guideline for communicating probabilities from
Gigerenzer’s book [33] is to use natural frequencies (counts
of events) rather than probabilities or conditional probabilities.
A natural frequency approach to explain the CCDF in Fig. 6
is as follows: Over a period of 200 years there would be
1000 blackouts in the data. Then, on average, 190 of these
blackouts will be less than 100 MW and 810 of these blackouts
will be greater than 100 MW. On average, there would be
441 blackouts greater than 500 MW, 243 blackouts greater
than 1000 MW, 45 blackouts greater than 5000 MW, and 18
blackouts greater than 10 000 MW.

Another simple way of indicating blackout frequency spec-
ifies the average return time between blackouts. For example,
on average, there is a blackout bigger than 10 000 MW every
11 years.7

7One caveat with average return times is that they should not be confused
with more likely outcomes. Suppose that the times between blackouts are
exponentially distributed. Then, since the exponential distribution is always
decreasing, intervals between blackouts shorter than 11 years are more likely.
For example, there is a probability greater than 0.5 that the interval between
blackouts bigger than 10 000 MW is less than 8 years.
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Fig. 6. CCDF of load shed in WECC blackouts.

Although we do not discuss blackout duration in the paper
due to deficiencies in the quality of the duration data, it
should not be forgotten that blackout duration also contributes
strongly to blackout impact.

VIII. CONCLUSIONS

We use historical blackout data from NERC to give an
improved analysis of reported blackouts of the Eastern
and Western electric power transmission interconnections
in North America, including estimates of the blackout
size distributions in terms of load shed and customers
disconnected, the statistics of waiting times, and long-term
correlations between blackouts.

The observed blackout size distributions have heavy tails
with a power law characteristic. Therefore, confirming pre-
vious studies, large blackouts are rare but expected to occur
occasionally. Also accounting for the costs of large blackouts,
the risk of large blackouts exceeds the risk of medium size
blackouts in North America. This conclusion appears to be
robust despite uncertainties in the blackout costs.

The heavy tails in the probability distribution of blackout
sizes imply that blackout size is inherently highly variable.
In particular, we make calculations based on observed data to
show that, when large blackouts are not censored, annual mean
values of blackout size are also inherently highly variable and
are not representative or useful blackout statistics. We briefly
discuss good ways to communicate the blackout statistics.

The statistics of the times between blackouts are well de-
scribed by a Poisson distribution with a mean rate that slowly
changes in time. There are mild long-term time correlations
present between blackouts.

We reaffirm the importance of continuing to collect and
analyze comprehensive blackout data for power transmission
systems.
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TABLE V
CORRECTIONS TO LOAD SHED DATA FOR 4 LARGE WECC BLACKOUTS

Blackout date DAWG load shed Corrected load shed Source

Jan 17 1994 4235 MW 7500 MW [17]
Dec 14 1994 5020 MW 9336 MW(a) [17]
Jul 2 1996 2500 MW 11850 MW(b) [18]
Aug 10 1996 0 30390 MW [19]

(a) comprises 6877 MW firm and 2459 MW interruptible.
(b) sum of load shed in 5 islands.

APPENDIX: CONSERVATIVE APPROXIMATION OF
BLACKOUT DURATION DEPENDENCE ON SIZE

The NERC data on blackout data on large blackouts is
sparse and has uncertainties due to non-uniformities in black-
out duration definitions and reporting. Therefore, we extract
from the NERC data a conservative lower bound on the
relationship between blackout duration and size rather than
the relationship itself. We also improved the NERC duration
data by systematically searching for and integrating public data
about the NERC blackouts.

There appear to be two patterns of dependence of blackout
duration D on load shed s in the improved NERC data. For
smaller blackouts, there is a roughly linear dependence and
for larger blackouts there is a sublinear dependence below
the linear dependence. Fitting a power law curve to the
sublinear larger blackout data yields D = 29.5s0.69. Fig.
7 shows the improved NERC data for larger blackouts, the
upper curve D = 29.5s0.69, and a lower curve D = 29.5s0.5

with an exponent 0.5 that is smaller than 0.69 and therefore
more conservative. Most of the data lies above the lower
curve D = 29.5s0.5, even while allowing some margin for
uncertainty in the data. Therefore we use D proportional to
s0.5 as a conservative lower bound.

Fig. 7. Dots show improved NERC data for blackout duration versus size
for larger blackouts. Upper curve D = 29.5s0.69 fits a power law to the
sublinear, large blackout data. Since lower curve D = 29.5s0.5 lies well
below most of data, it is a conservative lower bound.
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