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Abstract
The power transmission grid,  as well as many other 

complex critical infrastructure systems, display 
characteristics of a critical or near critical complex 
system with the risk of large cascading failures.  
Understanding this risk and its relation to the system 
state as it evolves, could allow for a more realistic risk 
assessment over time and even for mitigation or at 
least preparation if in a high risk state. In order to 
facilitate this type of analysis in the context of the 
power grid as a complex system, we develop a new 
measure  of the complex system state, the generalized 
autonomous generational average Lambda-gaga, 
which correlates with the risk. The Lambda-gaga 
measure is an extension of the standard cascading 
propagation measure lambda but avoids the 
contamination of that measure by small events. 

1. Introduction 

Complex critical infrastructure systems such as the 
power transmission grid are prone to cascading failures 
of all sizes [1,2].   This is characteristic of complex 
systems operating near their critical point [3-7].  
However, in  estimating the risk of large blackouts, a 
question that remains open is how close a system is 
operating to the critical point or operational limit.  
Ideally, we would like to know this both on average 
and on a short time scale to be able predict the risk of 
large failures.  It is not clear that in complex systems of 
high dimensionality such as the power grid there is 
well defined short time “critical point” or if there is 
rather more of  a “critical region”. 

We can look at fluctuations of a typical power 
system property such as the loading. The loading 

oscillates in time on a daily basis. See for instance the 
oscillating red line in Fig. 1. Let us assume that there is 
a critical loading (black line in Fig. 1), and we want to 
evaluate how close the system gets to the critical point 
(the length of the arrows). Much of the time the system 
is well below the critical point and any initiating 
failures that occur during this time will tend to have 
very short cascades that have little effect. However, if 
the initiating failures happen to coincide with the more 
highly loaded conditions, then there is a chance of a 
large cascade. We want to be able to estimate the 
proximity of the system to criticality independently of 
the regular fluctuations well below criticality.

Fig. 1. Time evolution of the system 
loading (in arbitrary units) compared to 

the critical loading.

One of the standard measures of the proximity to 
the critical point is the average propagation parameter  
λ.  λ is easily calculated from the time series of failures 
during a cascade. The cascading failures are grouped 
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into generations so that the failures in one generation 
(parents) give rise to (children) failures in the next 
generation. When simulating cascading failure, the 
generations correspond to iterations of the main loop 
calculating the failures. 

 The standard Harris estimator of the propagation λ 
is calculated by taking the average  of the ratio of child 
failures (generation i) to parent failures (generation i-1) 
over all the cascading events [8-11].  If the ratio is 
bigger then 1, the propagation can grow very large; if 
the ratio is smaller then 1, it eventually dies off.   (As an 
interesting side note, the average propagation was a 
measure originally developed to investigate the 
survival and potency of the lines of descent of the 
British upper classes [12]).  One problem with this 
measure (in addition to its original application) is that 
it averages over all fluctuations of the system well 
below criticality.

Here, we will develop the generalized autonomous 
generational average (gaga)  λgaga measure based on the 
propagation of the cascading failures in the power 
system modified from the average propagation λ just 
discussed. 

Although the λgaga measure is general,  the simulated 
results illustrating the new measure presented here are 
obtained with the OPA power transmission model [3, 6, 
15].  The OPA model for a fixed network configuration 
represents transmission lines, loads and generators with 
the usual DC load flow approximation using linearized 
real power flows with no losses and uniform voltage 
magnitudes. 

There are two basic timescales modeled in OPA. 
For the slow, long time scale part,  the OPA blackout 
model represents the essentials of slow load growth, 
cascading line outages, and the increases in system 
capacity coming from the engineering responses to 
blackouts. The short timescale part captures the 
cascading line outages leading to a blackout, which are 
regarded as fast dynamics and are modeled as follows. 
Starting from a solved base case, blackouts are initiated 
by random line outages with a probability p0. 
Whenever a line is outaged, the generation and load is 
re-dispatched using standard linear programming 
methods. This is because there is more generation 
power than the load requires and one must choose how 
to select and optimize the generation that is used to 
exactly balance the load. The cost function is weighted 
to ensure that load shedding is avoided where possible. 
If any lines were overloaded during the optimization, 
then these lines are outaged with probability p1. The 
process of re-dispatch and testing for outages is 
iterated until there are no more outages. The total load 
shed is, then, the power lost in the blackout. 

The slow dynamics model the growth of the load 
demand and the engineering response to the blackout 
by upgrades to the grid transmission capability. The 
slow dynamics is carried out by the following small 

changes applied each time a potential cascading failure 
is simulated: All loads are multiplied by a fixed 
parameter that represents the rate of increase in 
electricity demand. If a blackout occurs, then the lines 
involved in the blackout have their line flow limits 
increased slightly. The grid topology remains fixed in 
the upgrade of the lines for model simplicity. In 
upgrading a grid it is important to maintain 
coordination between the upgrade of generation and 
transmission.  The generation is increased at randomly 
selected generators subject to coordination with the 
limits of nearby lines when the generator capacity 
margin falls below a threshold.

The test networks we use here include 200, 400,  
800 and 1600 node networks that are randomly 
constructed to have properties similar to real power 
networks, but allow the effect of changing network size 
to be studied. These artificial networks are constructed 
based on the methods in [13]. We also include some 
results on observed and simulated data from the WECC 
grid.  In order to collect reasonable statistics, we  
typically simulate for 40000 simulation steps or more 
depending on the system size. 

2. Defining λgaga 

To start, we consider a time interval long enough to 
have many cascades. The cascade length is simply the 
number of iterations in a cascading failure and jM is the 
maximum number of iterations in the cascades during 
the time evolution. Then, for every k < jM, we can 
calculate
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                                         (1)

where Ok i( ) is the sum of the number of overloaded 

lines in iteration i for all cascades with length k or 
greater than k. Note that λ0 i( )  is our usual definition 

of the λ parameter. Then, for k > 2 (to have values to 
average over), we define an average value of λ over the 
iterations; that is,

λ
k
=

1

k − 2
λk i( )

i=2

k−1

∑                                (2)

The value of < λ >k generally saturates quickly for 
k > 3 as shown in Fig. 2.
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Fig. 2. Lambda k values for the 800-node 
network as a function of k.

The new measure lambda gaga is the averaged 
value over all values of the cutoff k > 2. That is, λgaga is

λ
1
=

1

jm − 3
λ

k
k=3

jm

∑                       (3)

This is a measure of the averaged propagation value 
for the longer cascades. It is then an averaged value of 
the propagation λ when the system is closer to critical 
that is independent or autonomous from the subcritical 
fluctuations of the complex system with time. That is,  
the measure is a generalized autonomous generational 
average (gaga).  Its value can give a measure of the 
proximity to criticality.

To compare different evolutions of the system from 
different system states, measuring the propagation  of 
the cascade is not sufficient.  The maximum length of 
the cascades is another factor that indicates the 
proximity to the critical point. Therefore, to compare 
different states, we take the maximum value of jM for 
the different states, let us call this value JM, then we 
define an alternative λgaga by

λ
2
=

1

Jm − 3
λ

k
k=3

jm

∑                             (4)

This is equivalent to including zeros for the values of 
lambda at the missing iterations, weighting the result 
toward states with longer cascades even if the 
propagation λ is the same.

For instance,  we can consider the OPA results for 
the 400-node network.  We divided the total length of 
time, 105 days, in periods of 1000 days and in each of 

these periods we calculate the two definitions of λ gaga. 
The result for the full time evolution is shown in Fig. 3.

Fig. 3. Both λgaga values for the 400-node 
network

We can see that the value of <<λ>>1 has small 
oscillations in time with a mean value of 0.87 and 
standard deviation 0.03. On the other hand,  the value 
of <<λ>>2 has much larger fluctuations in time with a 
mean value of 0.61 and standard deviation 0.17. The 
latter shows a greater variation because it combines 
propagation with the length of the cascade. When 
combined these two measures give complementary 
information about the system state with <<λ>>1 giving 
information about the average state and <<λ>>2 giving 
more time-localized information. For example, the 
peaks in <<λ>>2 where the value is the same as or 
close to <<λ>>1 the cascades are dominantly of the 
maximum length, while in the valleys,  where the 
<<λ>>2 value is much less then <<λ>>1 the lengths are 
on average much less then the maximum. As we 
approach the maximum length of the cascades, there 
are few cascades of that length so the statistics become 
sparse.

It is still an open question what the shortest time 
interval one can use to make an optimal determination 
of these measures. The criteria to use for these 
determinations is still being investigated, so for now 
we use 1000 days which seems sufficiently converged 
for measure 1 and yet short enough to show significant 
differences in measure 2. 

We can now ask if there is any correlation between 
λgaga and the size of the blackouts. In every time 
interval that we have calculated lambda gaga, we have 
also evaluated the averaged load shed normalized to 
the power demand and its maximum value. In Fig. 4, 
we can see failure size as a function of the two λ gaga
measures for the 400 and 800 node networks.
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Fig. 4. Averaged load s
power demand and its
function of λgaga for t

netw

shed normalized to the 
s maximum value as a 
he 400 and 800 node 

works

Fluctuations notwithstanding, we can see a clear 
correlation in the results plotted in Fig. 4. The 
resolution is not very good because we do not have 
many samples of values of λ gaga as can be seen in Fig. 
3. However, higher values of λ gaga lead to larger 
blackouts, both in average normalized load shed and in 
the maximum load shed as shown in figure 5.  
Interestingly, there is no observable correlation with 
the overall probability of a blackout, for the 400-node 
network. 

Fig. 5. Likelihood of a blackout being large 
as a function of λgaga for the 400-node 

network

This result is to be expected since we have 
averaged over 500 consecutive days in order to 
calculate λ gaga. This implies averaging over many 
different states of the system and we obtain an 
averaged value of the probability. Therefore,  this way 
of calculating λ gaga is good as an overall measure of 
proximity to the critical point, but it does not function 
well as a metric to be correlated with short time risk of 
a blackout. 

3. A second approach to the calculation of 
λgaga: state of the system vs global 
properties of the system 

While the calculation of the λ gaga measures 
averaged over  time intervals is both reasonable and 
useful (as obtaining the time evolution on as short a 
time scale as possible is a goal of this work), one 
potential problem encountered in the previous 
evaluation is the time averaging that combines multiple 
system states.  A possible alternative is to order the 
different cascades by value of <M> (the spatially 
averaged normalized line loading) and do the 
averaging of cascades within a bin of <M>. That could 
insure a more homogeneous (by the <M> measure)  set 
of system states. We have done this for the three 
artificial networks and the results are plotted in Fig. 6.  
The figure shows that the value of <<λ>>1 is nearly 
constant and practically independent of the value of 
<M>. However, <<λ>>2 shows some degree of 
correlation with <M>. Therefore, the second definition 
may be a better representation of the “instantaneous” 
proximity to the critical point while the first definition 
is giving an overall state measure. There are 
oscillations seen in these correlations because the 
statistics of large events are relatively sparse.

Fig. 6. The two mea
function of <M> for

netwo

asures of λgaga as a 
r the three artificial 
orks.

To be able to take better account of sample sparsity, 
in Fig. 7, we show the number of events per bin for the 
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three networks. We can see in the second Fig. 6 that the 
200-node case with more samples shows a smoother 
behavior and better correlation. To avoid distortions at 
the two ends of the distribution because of smaller 
number of samples in the bins we will exclude bins 
with less than 200 events. 

Fig. 7. Number of events per <M> bin for 
the three artificial networks

After accounting for sample size effects, it remains 
clear that  <<λ>>1 measures only propagation as it 
does not change much when <M> is varied.  This 
measure is an overall property of the system as large 
failure events may happen at any value of <M> 
although their probability can depend on <M>. 
However, the averaged length of a cascade shows 
similar dependence on <M> to the one we have seen 
for the blackout size, as shown in Fig. 8, and <<λ>>2 
carries some of this information which is why this 
measure has a correlation with <M>. 

Fig. 8. Averaged number of iteration of the 
cascading failures as a function of <M> for 

the three artificial networks

4. λgaga and criticality 

The next question to ask is can we relate the λ gaga 
measures to other standard measures of criticality?  
One way is to look at the relation between those 
parameters and the existence and value of a power law 
in the PDF and Rank functions of the size of the 
blackouts. To explore this, we can vary lambda gaga 
using p1 as the control parameter. A lot of things 
change when we change p1, but we will focus just on 
<<λ>>.

To determine the exponent of the possible power 
tail, we use the Clauset method [14] because it gives us 
both the exponent and a criterion for when such a 
power tail may exist. Results for the 400-node network 
are summarized in Fig. 9.
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Fig. 9. Exponent of the rank function of the 
load shed normalized to power demand 
with the two expressions for λgaga as a 

function of p1 for the 400-node network.

Figure 9 contains a great deal of information, 
including the power law exponent alpha determined by 
Clauset’s method The figure is divided in two regions 
following the criterion of Clauset on the credibility of 
the power law. On the left, the power law is credible 
and the value of the exponent alpha decreases with 
increasing p1. At the boundary the exponent is close to 
1, a characteristic of a critical point. On the right the 
tail of the Rank function is dominated by an 
exponential decay. In this region the dynamics of the 
system have some of the characteristics of a 
supercritical system.

In the figure, we can see that <<λ>>2 peaks at the 
critical point,  while <<λ>>1 does not show a 
dependence on p1 in the region of criticality. It is 
practically constant in the region where the Rank 
function has a power tail.

A similar plot is shown in Fig. 10 for the 800-node 
network.  However, we can see very similar features to 
the 400-node case.  It is notable,  that the point at which 
<<λ>>1 and <<λ>>2 come together is the point at 
which the system becomes supercritical.  This could 
make the combination a useful diagnostic for 
measuring proximity to the supercritical region.  It 
would also be interesting to investigate if different 
systems have different proximities to this point such as 
summer vs winter, US vs Europe, developed vs less 
developed systems, etc.

Fig. 10. Exponent of the rank function of 
the load shed normalized to power demand 

with the two expressions for λgaga as a 
function of p1 for the 800-node network

5. Is Lambda gaga related to blackout 
risk? 

We have already seen that the blackout risk is 
related to metrics that describe the state of the system 
but not always to λ gaga, which gives a global property 
of the system. However, we could ask further if one 
system is associated with a larger λ gaga than a second 
one, is the first system at higher risk of blackouts?

To change λ gaga in OPA, we have two possible 
parameters p1 and the system size.  We consider here a 
scan on each of these parameters. For each scan, we 
calculate the probability of a blackout and the averaged 
size of the blackout. Knowing both, we can construct a 
risk function [16]. The results for the p1 scan are given 
in Fig. 11 and compared to λgaga.  We have only plotted 
<<λ>>2 because it was the measure more strongly 
correlated with the criticality results.
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Fig. 11. Risk of a blackout and λgaga for the 
p1 scan. The p1 scan was done for the 400-

node network.

From the figure we can see that there is a strong 
correlation between Lambda-gaga and risk for small 
values of p1 (consistent with the left sides of Figs. 9 
and 10) but no correlation between lambda gaga and 
the blackout risk for values of p1, greater then 0.1, 
which is consistent with a supercritical state due to an 
unrealistically large p1. 

Fig. 12. Risk of a blackout and λgaga for the 
size scan, with constant Np0 and Np1. 

 While, Fig. 12 shows no correlation (or an 
anti-correlation) between λ gaga and Risk This is likely 
because Np1 and Np0 are being held constant as the 
size N is increased. In this case while the system might 
be getting more critical, the frequency and propagation 
of the failures could be decreasing due to the shrinking 
p1 and p0.  This is consistent with Fig. 13 in which p0

and p1 are held constant as the system size increases 
showing a marked increase in risk with size and a 
strong correlation with Lambda gaga.  It is worth 
pointing out that what is held constant when looking at 
size scalings is more subtle then might appear. The two 
ways of approaching size scaling shown here are likely 
each reasonable depending on whether a system is 
growing in size or more detail is being put into the 
system.  For the constant Np0 and Np1 scaling, Lambda 
gaga grows as the size increases because larger systems 
show more critical behavior,  however the risk 
decreases because p0 and p1 (the failure probability 
parameters) both get smaller,  decreasing the failure 
frequency and propagation.  In contrast, when p0 and p1
are kept constant, as the system gets larger the risk 
increases as Lambda gaga does with some evidence 
that Lambda gaga saturates at the largest sizes.   This 
too can be understood as coming from a higher overall 
probability of random failure triggers, since Np0 gives 
that probability and a higher likelihood of propagation 
as Np1 is related to that overall probability.

Fig. 13. Risk of a blackout and λgaga for the 
size scan, with constant p0 and p1. 

 The risk calculations shown were done following 
ref [16] and with scanning sizes from 100 to 1600 
nodes. 

6. Real and model data 

 The λ gaga computations can be applied to real data 
as well as model data. Figure 14 shows λ gaga as a 
function of the cutoff k for observed automatic line 
outage data from a utility in the Western USA 
interconnection. This line outage data is explained in 
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detail in [10]. It can be clearly seen that the system 
reaches it’s saturated value at a minimum cascade 
length k of ~ 3 and the saturated value is the highly 
critical value of 1. The line outage data sets we have 
are too short to perform the time series analysis so for 
comparison in Fig.  14, we show the same analysis for 
both a series of artificial grids of sizes 200-800 (on the 
left) and 2 WECC model grids (on the right). The 
WECC model grids have 2508 and 1553 nodes and are 
described in  [15].

�
Fig. 14. λgaga versus k (the cutoff) for utility 

line trip data showing a critical state. 

The left side of Fig. 15 shows that for the largest 
network, λgaga also saturates by k of three at a value 
close to 1.  This suggests that the minimum size needed 
for the system to show the critical characteristics is 
~800 nodes. The WECC grid models (Fig 14 right 
hand side) approach the saturated value more slowly 
then the utility data or the artificial network data.  This 
could be due to the fact that the utility data was for one 
utility rather then the entire WECC and was therefore 
confined to a fairly homogeneous sub-region of the 
grid making it more like the homogeneous artificial 
grids.  This is in contrast to the entire WECC which is 
rather heterogeneous. Additionally, despite the large 
number of nodes in the model WECC grids, the fairly 
homogeneous sub-regions of the network are smaller 
then 800 nodes, which could pose an additional 
constraint on the grid dynamics.

The application to the utility data is promising but 
needs much more data to be able to say anything 
definitive about the overall state.

� �

Fig. 15. λgaga versus k
of homogeneous artifi

pair of WECC

k (the cutoff) for a set 
ficial grids (left) and a 

C grids (right). 

7. Conclusions 

 Two new measures of system state have been 
explored, showing the possibility of providing both an 
overall measure of the proximity to a critical point and, 
at a shorter time scale, the “instantaneous” state.  These 
have been applied to both OPA model data from a 
series of artificial networks with parameters p0 and p1 
[15] similar to real power grids.  A preliminarily 
application to real data has yielded similar results. 
These measures appears to do a good job of 
quantifying the systems proximity to the “critical 
region” and therefore can give some indication of the 
“risk” associated with the state or operational regime.  
It would be interesting to calculate these measures in 
different operational periods, winter vs summer, 
regulated vs deregulated, etc in order to see if there are 
any differences in the propagation characteristics.  The 
combination of the two measures and how close they 
are to each other appears to be a particularly promising 
metric for the system state and its overall proximity to 
the supercritical regime.

An additional application of these measures is for 
validation of the models used to study the grid.  Since 
we can apply these to the real world cascading data as 
well as model results,  comparison of the two gives a 
good measure of  how well the models capture the true 
cascade dynamics.

Though we have used the power transmission grid 
as our example system, the measure is general and can 
be applied to any cascading system, perhaps even for 
investigating survival and potency of royal bloodlines.
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