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Abstract 

With ever growing networks in critical infrastructure 
systems, the impact of network characteristics such 
as size and homogeneity on their complex system 
dynamics and risk of failure becomes crucial.  In this 
paper we investigate the effect of highly 
inhomogeneous network structures, characteristic of 
some types of real world systems, on the robustness 
of the power transmission grid using a complex 
system model of the power transmission system 
(OPA).  It is found that as the system structure is 
varied from homogeneous to heterogeneous and 
compared to multiple unconnected small networks 
with the same aggregate size, the risk can undergo 
large changes. The unit size of the homogeneous 
parts of the inhomogeneous system appears to be 
very important in determining whether large 
blackouts become more likely as the system becomes 
more homogeneous or inhomogeneous.   
 
 
1. Introduction  
 

Power transmission networks and many other 
critical infrastructure networks come in a wide 
variety of shapes and sizes but overall share the 
characteristics that they are growing and becoming 
ever more critical and heavily utilized.  Because of 
their critical importance to the functioning of modern 
society, it is crucial that we understand their strengths 
and weakness so as to understand how to reduce their 
risks of failure and mitigate their vulnerabilities. 
Different regions even within the same basic system, 
can have rather different characteristics and therefore 
it is important to understand how these regional 
characteristics can affect the risk for the global 
network.  Among the characteristics that may vary 

from region to region are the size and degree of 
homogeneity of the network. 

Since we are exploring the network robustness 
as characterized by the long-term risk of large 
failures and temporal dynamics, we use the OPA 
model. The OPA model [1, 2] was developed to study 
the long-term patterns of blackout of a power 
transmission system under the dynamics of an 
increasing power demand and the engineering 
responses to failure. In this model, the power demand 
is increased at a constant rate and is also modulated 
by random fluctuations. The generation capacity is 
automatically increased when the capacity margin is 
below a given critical level. 

Using the OPA model we have been able to study 
and characterize the mechanisms behind the power 
tails in the distribution of the blackout size. These 
algebraic tails obtained in the numerical calculations 
are consistent with those observed in the study of the 
blackouts for real power systems [3, 4]. Most 
importantly, this model permits us to separate the 
underlying causes for cascading blackouts from the 
triggers that initiate them and therefore explore 
system characteristics that enhance or degrade 
resilience and reliability of the power transmission 
grid.  One of these characteristics, the one 
investigated here, is the heterogeneity of the network. 

Some real networks have an inhomogeneous 
structure with a series of relatively homogeneous 
regions coupled to each other like pearls on a string 
(Fig. 1). To understand the impact of inhomogeneity, 
specifically inhomogeneity on a certain scale, and 
thereby improve the realism of the model, we have 
investigated a new type of network structure with 
OPA. In this, we compare homogeneous networks to 
inhomogeneous networks of the type shown in figure 
1 and finally compare both to a set of uncoupled 
small networks each with the size and structure of the 
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“pearls” on the string in the inhomogeneous network.  
Figure 2 shows a 400 bus version of the 3 types of 
networks described.  This will allow us to vary: 1) the 
number of small networks 2) the size of the small 
networks 3) the overall system size and therefore the 
scale separation between the homogeneous small 
parts and the overall system size 4) the total power in 
the different parts.  

 

 
Figure 1 A representation of a real power 

transmission network 
 
 

 
 

 

 

 
Figure 2 The types of artificial 

constructed networks used for this 
investigation.  The left most panel is a 
homogeneous 400 bus network, the middle 
panel is a heterogeneous network made by 
connecting 4 100 bus networks and the right 
panel is 4 unconnected 100 bus networks. 

 
To properly evaluate the homogeneity vs. in 

homogeneity there must be a clear separation of 
scales (sizes) between the parts of the networks and 
the global size.  This makes the problem very 
computationally challenging because of the long 
computation times to compute the complex system 
steady state statistics and dynamics of large 
networks. 

The need for analysis and understanding of 
cascading in interconnected or coupled networks 
representing parts of the same or different 
infrastructures was recognized and described 
qualitatively in [5, 6] in 2003 and 2004. The effect of 
the coupling in such systems has been studied with 
several different types of models, many of which 
were pioneered at HICSS. In 2005, [7] gave the first 
analysis with coupled probabilistic cascading 
interconnected networks and with coupled self-

organizing complex system interconnected networks. 
The analysis and simulation showed how the 
coupling could affect the critical point behavior. In 
2007, [8] modeled cascading failure based on forest 
fire type models to study coupled networks, and in 
particular how the coupling affected the critical point 
and the power law behavior of the coupled system. In 
2004, [9] applied branching processes, which have 
long been used to study general cascading processes, 
to cascading failure in power grids. In 2012, [10] 
used two-type branching processes to study sandpile 
dynamics of particles on coupled networks with the 
same topologies as power grids. The present paper 
uses self-organizing complex systems models of 
coupled power grids, and is the first such interacting 
model to use some basic power system models that 
reflect some power system realities in a simplified 
form. 

In this paper, we describe the initial investigations 
and the impact on the long-term reliability of the 
system from the changes in system structure 
introduced in this model.  Section 2 will briefly 
review the OPA model while section 3 will both 
analytically and computationally, using OPA, analyze 
the multiple independent unconnected small system 
case.  Section 4 compares the multiple small 
unconnected systems case to the multiple connected 
small systems network. The 5th section investigates 
the homogeneous vs. inhomogeneous case in terms of 
structure while section 6 discusses the case in which 
the additional inhomogeneity of power balance is 
added.  Finally section 7 is a brief discussion and 
conclusion. 
 
 
2. The OPA model 
 

The OPA (ORNL-PSerc-Alaska) model for the 
dynamics of blackouts in power transmission systems 
[1, 2] shows how the slow opposing forces of load 
growth and network upgrades in response to 
blackouts could self organize the power system to 
dynamic equilibrium.  Blackouts are modeled by 
overloads and outages of lines determined in the 
context of LP dispatch of a DC load flow model. This 
model has been found to show complex dynamical 
behavior [1, 2] consistent with that found in the 
NERC data [3].  Some of this behavior has the 
characteristic properties of a system near a critical 
transition point.  That is, when the system is close to 
a critical point, the probability distribution function 
(PDF) of the blackout size (load shed, customers 
unserved, etc) has an algebraic tail and large temporal 
correlation lengths are possible.  One consequence of 
this behavior is that at these critical points, both the 
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system utilization is maximized and the risk for 
blackouts increases sharply.   Therefore, it may be 
natural for power transmission systems to operate 
close to this operating point.  

 The fact that, on one hand, there are critical 
points with maximum power served and, on the other 
hand, there is a self-organization process that tries to 
maximize efficiency and minimize risk may lead to a 
power transmission system that is naturally driven to 
this point.   

In general, the operation of power transmission 
systems results from a complex dynamical process in 
which a variety of opposing forces regulate both the 
maximum capacity of the system components and the 
loadings at which they operate. These forces interact 
in a highly nonlinear manner and may cause a self-
organization process to be ultimately responsible for 
the regulation of the system.  This view of a power 
transmission system considers not only the 
engineering and physical aspects of the power 
system, but also the engineering, economic, 
regulatory and political responses to blackouts and 
increases in load power demand.  A detailed, 
comprehensive inclusion of all these aspects of the 
dynamics into a single model would be extremely 
complicated if not intractable due to the intrinsic 
human interactions involved. However, it is useful to 
consider simplified models with some approximate 
overall representation of the opposing forces in order 
to gain some understanding of the complex dynamics 
in such a framework and the consequences for power 
system planning and operation.  This is the basis for 
OPA. 

In the OPA model the dynamics involves two 
intrinsic time scales. There is a slow time scale, of 
the order of days to years, over which load power 
demand slowly increases and the network is upgraded 
in engineering responses to blackouts.  These slow 
opposing forces of load increase and network 
upgrade self organize the system to a dynamic 
equilibrium.  There is also a fast time scale, of the 
order of minutes to hours, over which cascading 
overloads or outages may lead to blackout. The OPA 
model computes the long-term reliability taking into 
account the complex systems dynamics and 
feedbacks; that is, OPA is run until it converges to a 
complex systems steady state with stationary 
statistics and long time correlations. Because of the 
time correlations intrinsic to such a system, these 
simulations are different from the more common 
“Monte Carlo” method for generating statistics.  In 
the case of OPA, we generally run the simulation for 
longer times to generate better statistics, thereby 
sampling more of the allowed system states with the 

probabilities of sampling a given state being 
generated by the system itself. 

The main purpose of the OPA model is to study 
the complex behavior of the dynamics and statistics 
of series of blackouts in various scenarios.  This 
allows us to easily investigate the impact of different 
levels of inhomogeneity on the risk and dynamics as 
well as other network characteristics.  For the rest of 
the paper, OPA results are used for the computational 
analysis. 
 
 
3. Multiple independent networks 
 

To begin, we will consider a system made up of a 
set of n separate identical small networks, each with 
100 buses. We choose this system to start with as it 
both has analytically tractable characteristics and will 
be the base case that will then be used to compare 
with the other networks.  To look at some of these 
characteristics, let us assume that the PDF of failure 
sizes of n of these networks is Pn(x) and the 
frequency of failures is ν n. The blackout size is 
measured by x. Therefore, if we add another small 
network to the system, we have the probability of a 
failure of size x given by: 

 
νn+1Pn+1 x( ) = ν1P1 x( ) 1−νn( ) +

νnPn x( ) 1−ν1( ) + ν1νn dyP1 x − y( )Pn y( )
0

x

∫
   (1) 

 
For blackouts in small networks the PDF of 

blackout size is very close to an exponential (this is 
for sizes smaller then the size at which the 
characteristic power law tail can start to appear, 
typically greater then 200 for the power grid). So we 
can assume:  

 
P1 x( ) = a1e−a1x           (2) 

 
Starting from Eq. (1) and iterating, we can find a 

general solution for the PDF of a system of n 
unconnected networks has the form: 

 

Pn x( ) = 1
1− 1−ν1( )n

e−a1x

x
n
k
#

$
%
&

'
( 1−ν1( )n−k

ν1a1x( )k

k −1( )!k=1

n

∑ (3) 

 
As an approximation, we assume that the variable 

x is defined between 0 and infinite. This is a good 
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approximation for exponential tails. The 
corresponding Rank function is then: 

 

Rn x( ) = e−a1x

1− 1−ν1( )n
ν1

n
k
#

$
%
&

'
( 1−ν1( )n−k

ν1a1x( )k−1

k −1( )!k=1
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k−1

∑
k=2

n

∑
.
/
,

0,

(4) 
 
We have compared the analytical result for the 

Rank function, Eq. (4), with the numerical results 
using OPA. This comparison is shown in Fig. 3. As 
can be seen the fit to an exponential is reasonably 
good but only approximate for the n=1 case with a 
single network of 100 buses, so we cannot expect 
better agreement for the higher n results.  

 

  

  

Fig. 3. Comparison of the analytical and 
numerical rank functions for multiple 

unconnected networks. 
 
 
The frequency of the failures for n disconnected 

networks is given by 
 
νn =1− 1−ν1( )n    (5) 

   
 This solution for the frequency agrees very well 

with numerical results from the OPA code using 
multiple unconnected 100 networks as shown in Fig. 
4.   

 

 
Fig. 4. Frequency of blackouts in systems of 

multiple 100 bus unconnected networks 
 
These results show that small networks and by 

extension multiple unconnected (and therefore un-
correlated) small networks exhibit near exponential 
PDFs for failure size and a clearly understood 
frequency of failure. 
 
4. Multiple unconnected networks versus 
multiple linked networks  
 

In the previous section we have studied the 
probability of failure of a system of n unconnected 
networks. Larger networks are a natural result of the 
economics/efficiency of scale. By linking these small 
networks (Fig. 4) it is possible to improve the 
operation of the system in case of local failures, for 
instance, a generator is down, local demand is up, or 
lines are outaged.  In our models, the linking of the 
smaller homogeneous regions is done by choosing a 
few nodes at the edges of the network and connecting 
them to similar nodes in the neighboring small 
region. In some of these cases when the small 
networks are linked, power can be provided from 
other parts of the network to keep the whole network 
functioning. Once the networks are linked, we use the 
OPA code to dynamically evolve the system to get a 
reliable operating network. Thanks to the process of 
engineering upgrade as response to the demand, 
linking lines are upgraded during a transient process. 
Once in steady state, we then study the dynamics of 
the new system by running normally for the 
equivalent of 105 years. In this way, we collect 
enough information for the statistical studies. By 
linking small networks, we improve the efficiency of 
the overall system by reducing the frequency of 
failures. This is shown in Fig. 5, where we have 
plotted the frequency of blackouts as a function of the 
overall size of the network for three different network 
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configurations: 1) n multiple unconnected 100-bus 
networks, 2) a homogeneous n×100 bus network and 
3) n 100-bus networks linked by a few lines. Figure 4 
is an example of this last type configuration for n=8. 
The parameters used in these calculations are p0= 
0.00025 and p1= 0.037. It can be clearly seen in 
figure 5 that the connected networks, both the linked 
100 bus system and the homogeneous network do 
have a significant improvement in the frequency of 
failures due to the connected nature of the grid.  

 

 
Fig. 4. An eight 100 bus linked network 
 
 

 
Fig. 5. Frequency of blackouts as a function 

of the overall size of the network 
 
 
However, although the frequency of blackouts 

decreases when we link the networks, not all 
characteristics are positive for the operation of the 
fully connected system. When we link networks in 
order to improve efficiency and decrease the 
frequency of the blackouts, we also increase the risk 

of very large blackouts. This is shown in Fig. 6 where 
we have plotted the rank function (that is, the 
complementary CDF) of the blackout size for two 
1600 bus network, one with 16 100 bus unconnected 
networks and the other with 16 100 bus linked 
networks.  From figure 5 one can see there is almost 
a factor of 3 decrease in the frequency of failures 
between the linked and unlinked 1600 bus systems, 
but figure 6 clearly shows that though there is a 
reduction in probability of the small events, there is a 
large increase in the probability of the large events 
with the CCDF no longer being well fit with an 
exponential. 

 

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2 10-1

Unlinked
Linked

Rank

LS/P

16x100
p1 = 0.018
p0 = 0.00025

 
Fig. 6. Rank function of the blackout size for 
two 1600 bus networks. The red curve is for 

16 unlinked 100 bus networks and the blue is 
for 16 linked 100 bus networks. 

  
 
We will call the small networks that are used to 

make up the large system zones so as to be able to 
investigate the differences between the connected and 
unconnected systems. To understand the cause of the 
increase probability of the large blackouts, we can 
look at what happens in the different zones when 
there is a blackout. We see that the number of zones 
involved in a blackout decreases exponentially in the 
case of multiple non-connected systems. This is 
consistent with the individual units being unlinked 
uncorrelated systems with their own random drive, 
and it arises from the rare possibility that two or more 
blackouts happen independently in the different 
zones. In particular, the exponential dependence for 
larger blackouts arises from multiplying the 
probabilities of the independent zone blackouts. 
However, in the case of the linked system, the 
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probability of several zones being involved in a 
blackout increases significantly, as can be seen in 
Fig. 7.  The deviation of the probability from the 
unlinked system is most pronounced with the larger 
number of zones, suggesting quite reasonably that the 
largest correlations across the linked zones occur 
when the failures are largest, forcing the propagation 
across the links connecting the individual zones.  
Similar behavior has been found when looking at the 
synchronization function in coupled infrastructures 
[5].  It is worth noting that in this initial work, the 
failure probabilities and upgrade rules are the same 
for the linking lines as they are in the clusters.  
Modifications to this are being investigated as it is 
likely more realistic to have different failure 
probabilities and upgrade rates for the connecting 
lines then for the internal lines in the zones. 
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Linked
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Fig. 7. Probability of a blackout occurring 
across a “Number of zones” at the same 

time. 
 
5. Homogeneity versus Inhomogeneity  
 

The differences between the multiple 
unconnected, independent zones and the linked 
zones, is what might be expected. However, a more 
interesting question is what happens when one 
compares the linked zones to a homogeneous system 
with the same number of buses. These are among the 
differences found in the networks for different 
regions (Western US vs Eastern US for example). 
There are considerable obvious differences between 
the networks obtained by linking small networks, as 

shown in Fig. 4 and a homogeneous network with the 
same number of buses as shown in Fig. 8.  

 

 
Fig. 8. Homogeneous 800 bus network 
 
Their characteristics are also quite different. The 

homogeneous large networks have rank functions for 
the blackout size that are characterized by a clear 
power tail. The situation for the linked networks of 
the same sizes is less clear. The tails show higher 
probability for the largest blackout but the power tail 
is less obvious, as can be seen in Fig. 9 for networks 
with 1600 buses.  The change appears as a higher tail 
or less steep power law, consistent with the results 
seen as a function of the number of zones involved 
from fig. 7.  This might be an issue with the size of 
the individual small systems that make up the linked 
network.  

 

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1

1600 node
16x100 linked

Rank

LS/P  
 

Fig. 9. Rank function of the blackout size for 
p0 = 0.00025 and p1 = 0.018. 

 
In spite of the less clear power tail, we can always 

fit the tail of the rank function and use the exponent 
as a relative measure of how fast the tail falls off. The 
exponent of the rank function for the linked networks 
is in general lower than the exponent for the same 

2532



 
 

size homogeneous network. That implies that the risk 
of large blackouts is higher for the linked multiple 
networks. This difference between the exponents of 
the different systems increases as the reliability of the 
system, p1, decreases. This is shown in Fig. 10 for the 
networks made up by linked 100 bus networks as 
compared with the homogeneous networks. This 
again is consistent with the bump on the tail coming 
from the increased probability of large failures 
propagating across the links.  As p1 is the probability 
of propagation, with small p1, only the largest events 
have a high probability of propagating across the 
links but with higher p1, smaller events can propagate 
across the links, making the system act more like a 
larger homogeneous system.  However, when we 
consider linked 200 bus or larger networks then the 
heavier tails in the individual “little” systems makes a 
larger event more probable and therefore increases 
the probability of a failure propagating across the 
link.  In addition the scale separation between the 
components and overall network might not be large 
enough to see differences. 

 

 
Fig. 10. Exponent of tail of CCDF as a 

function of p1, the reliability parameter for 
homogeneous systems and linked systems. 

 
 
6. Linking networks with the different 
power levels 
 

In the linked networks we have looked at so far, 
each of the small grid zones have had the same total 
load and generation mix within them, ie they were 
individually capable of generating their needed 
power in the unperturbed state and that needed power 
was the same for all the small regions.  It is therefore 
the fluctuations in the load in the individual regions 

that force the flow of power across the links. 
However, in the real world the generation power and 
loads in the small zones are not all the same which in 
turn can cause much larger unbalanced flows across 
the links. Indeed, transfers of power between zones 
yields important economic and environmental 
benefits.  We therefore investigate the impact of 
variation in total power in a zone of the 
inhomogeneous network.  In this study, we choose 
one of the 100-bus small networks in the linked 
system and we multiply its generator power and loads 
by a factor k before linking it to the rest of the 
network. For simplicity we consider the case of a 4 
100-bus linked network. To the modified 100-bus 
component we assign the zone number 1. If k > 1, the 
loads and generators of zone 1 have levels higher 
than the others (ie it is a power exporting region), if k 
< 1, we have the reversed situation (a power 
importing region). In the present study, we have 
varied k from 0.25 to 8 by factors of 2. 

In Fig. 11, we have plotted the frequency of the 
blackouts and the averaged normalized load shed as a 
function of the factor k. We can see that the 
frequency of the blackouts decreases as k increase, 
while the averaged normalized load shed increases. 
The changes are small, but they seem to be 
systematic.  This is consistent with the results from 
the previous section. With a larger k (k>1), larger 
flows can be forced across the links by the load 
fluctuations in the region, making the system more 
strongly connected and therefore more likely to have 
large failures propagate across the links.  Conversely, 
when k is small (less then 1) the connections are 
effectively weakened because less flow is forced 
across the links, making the large failures less likely 
and making the system look more like the uncoupled 
system with a higher frequency of failure but fewer 
large failures.  

In this case, it is interesting to see what is 
happening in each of the four zones. In Fig. 12, we 
have plotted the averaged ratio of the load demand to 
the generation power in each zone. We can see from 
the figure that on average the zones are well 
balanced. As indicated before, the OPA evolution 
during the transient phase produces effective 
upgrades of the connecting lines in such a way that 
the system is reliable. In the different zones, the 
generation margin stays close to 0.20. No obvious 
unbalances are shown. 
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Fig. 11. Frequency and normalized load 

shed as a function of the imbalance of the 
power in the small pieces of the linked 

network. 
 
 

 
Fig. 12. Average load to generation ratio 

in each zone. 
 

However, if we look at the load shed in each 
zone, we can see that the averaged load shed is larger 
in the zone or zones that import power. This is shown 
in Fig. 13, where we have plotted the averaged 
normalized load shed as a function of zone number 
for all the values of the factor k that we have 
considered. The result is systematic and can be 
understood as coming from the inability of that zone 
being able to supply the needs of it’s power exporting 
neighboring zones when they have a large load 
fluctuation. 

When k < 1, only zone one imports power, there 
is an increase of the load shed in this zone but since 
zone one is only one zone of the four, its overall 
impact is small. However, for k > 1, there are three 

zones with lower generation. The averaged load shed 
increases in the three zones and in this case has a 
stronger impact on the overall load shed. This causes 
the stronger coupling across the entire system and 
explains the dependence of the global averaged load 
shed as a function of k shown in Fig. 11. 

The average fractional line loading, <M>, in each 
region behaves similarly to the load shed. For k > 1, 
the <M> in zone 1 is lower than in the other zones 
and the reverse occurs for k < 1 as it is shown in Fig. 
14. The zones with less generation power are more 
stressed than the others due to the large fluctuations 
in the demand from the higher power neighboring 
regions. These large fluctuations once again increase 
the effective coupling. 

 

 
Fig. 13 Normalized average load shed in 

each zone. 
 

 
Fig. 14 The fractional average line loading 

for the different zones for different values of 
the power imbalance factor k. 
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7. Discussion and conclusions 
 

Using a complex systems power transmission grid 
model  (OPA) to investigate the impact of grid 
inhomogeneity on the system, preliminary analysis 
suggests that in some cases the highly 
inhomogeneous network can have a higher risk of 
large failures than both the uncoupled individual 
systems and a homogeneous grid of comparable size.  
Additional inhomogeneities in the form of 
imbalances in the power in the different zones in the 
system added to the risk in the system.  A likely 
mechanism for this is the failure size dependent 
effective coupling between the different zones.  It is 
important to note that these results might change as 
the size of the individual parts get larger and move to 
a size which exhibits a heavy tail in the individual 
regions.  It should also be noted that the rules for 
power dispatch are system-wide in our present 
implementation and if dispatch were weighted toward 
the local zone, that too could have an impact on the 
results.     

The next step in this investigation is to vary the 
size of the small homogeneous regions (the zones) to 
find if these results change as these regions grow to 
the point that they have heavy tails of their own.  
Then, the power balance issues will be further 
explored to include a real load/generation imbalance 
causing systematic long-distance power transfers 
such that one region (zone) is not locally in balance 
and imports power from other regions in the base 
case operation.  Then the dispatch rules will be 
changed to investigate the impact of local versus 
system-wide power dispatch. And finally, islanding 
schemes can be investigated to see the impact of 
cutting the zones apart on the spread of the failures.  

It is clear that inhomogeneities can have a number 
of impacts on the system robustness and reliability 
coming from both the inhomogeneity in the network 
structure and in the balance of power across the 
inhomogeneous network. These seem to work 
together to move the system closer to or perhaps even 
past its critical point leading to a heavy tail or even a 
bump on the tail blackout (failure) size distribution 
with the increased large blackout risk inherent to 
those distributions.  

While the work presented here is specifically for a 
single type of infrastructure (the power transmission 
grid as modeled by OPA) that has an inhomogeneous 
structure, similar results likely would hold for 
coupled infrastructures where the inhomogeneity 
comes in the coupling.  
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