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Abstract

We validate the OPA cascading blackout simulation
on a 1553 bus WECC network model by establishing
OPA parameters from WECC data and comparing
the blackout statistics obtained with OPA to historical
WECC data.

1. Introduction

Over the last fifteen years, a range of models for
simulating cascading failure blackouts have emerged
[1], [2], and now it would advance the general state
of the art to validate these models. This paper uses
data for the Western Electricity Coordinating Council
(WECC) electrical transmission system to validate the
OPA model on a 1553 bus grid model of the WECC.
The 1553 bus grid model was developed in a California
Energy Commission project [3] for analysis of extreme
blackout events and is shown in Fig. 1.

The OPA model [4], [5] is a simulation that cal-
culates the patterns of cascading blackouts of a power
transmission system under the slow, complex dynamics
of an increasing power demand and the engineering
responses to failure. The individual cascades are mod-
eled by probabilistic line overloads and outages in a
DC load flow model with LP generation redispatch.
(O–P–A stands for Oak ridge–Pserc at wisconsin–
Alaska, indicating the institutions of the authors when
OPA was first conceived.) Section 3 gives a more
detailed summary of OPA and its main parameters.

Validation of cascading failure models is necessary to
find out which aspects of real blackouts are reproduced
by the various models, and is crucial in determining
what sort of conclusions can reasonably be drawn from
model results, and what are the model limitations.
In the case of cascading failure models, validation is
particularly important, because it is currently infeasible,
and perhaps inherently infeasible, to model and simu-
late all the mechanisms of cascading failure in great
detail.

We pursue the validation of OPA in the following
steps:

1) Review available data to extract some global
parameters for WECC that can determine OPA
input parameters (Section 2).

2) Examine available historical blackout and outage
data of the WECC [6], [7]. This is the key
statistical data to compare with the OPA results
(Section 4).

3) Present the OPA results with parameters from
WECC on the WECC 1553 bus network and
compare them with the historical data (Section 5).

4) Discuss the strengths and limitations of OPA
in the validation and indicate future work (Sec-
tion 6).

2. Global WECC parameters

One of the first pieces of data used in trying to
determine the parameters for modeling the Western
interconnect is simply the average rate of increase of
the electricity demand in recent years. For California
the peak demand from 1980 to 2005 increases at
a constant rate of 1.93% a year. Fig. 2 shows this
constant rate of increase in data from the California
Energy Commission [8].

Also, the U.S. Energy Information Administration
has on its website [9] data for the net internal energy
demand for the last ten years. A plot of these data in
Fig. 3 shows that net internal demand has increased at a
rate of 2.37% per year. The conclusion from these data
is that an annual rate of growth of 2% is a reasonable
value to model the rate of electrical usage growth in
WECC.

Other information available from the Energy In-
formation Administration [7] is the capacity margin
for the last 10 years in WECC. Fig. 4 shows a plot
of the capacity margin. The summer capacity margin
oscillates around 20% with some large deviations. This
value, 20%, is also the one estimated by NERC [10]
for the year 2011. Therefore, in what follows, 20% is a
reference value for the summer capacity margin in the
modeling of WECC.



Fig. 1. I553 bus model of WECC grid (bus place-
ment not geographic).

Fig. 2. California peak electricity demand from
1980 to 2005.

Fig. 3. Net internal energy demand for the last ten
years.

Fig. 4. California capacity margin from 1980 to
2006.



It is important to know the day-to-day variation of
the demand. By looking at the hourly variation of the
demand, it is possible to select the peak daily demand
and to construct a time series of the daily peak demand.
There is an yearly modulation of the demand that
can be eliminated and from the remaining data it is
possible to get a measure of the random daily variation.
From data from different parts of the USA, a value
between 10% and 15% seems a reasonable estimate
with California in general being near 15%.

The next piece of information is the frequency of
blackouts in WECC. The NERC data on (reportable)
blackouts from 1984 to 2006 gives this information.
The triggers of the blackouts can be classified in three
groups: 1) Equipment failure, 2) Limits in generation
and 3) Weather. Table I gives the annual frequencies
for these three types of blackouts.

TABLE 1. Annual frequency of blackouts in the
western interconnect from 1984 to 2006

Equipment failure 0.0075
Limit in generation 0.0029

Weather 0.0252
Total 0.0368

Using the rate of real increase of the demand, the real
critical margin, and real daily load fluctuation level, the
other OPA parameters can then be adjusted so that the
OPA model gives the correct blackout frequency.

3. OPA model summary & key parameters

The OPA model [4], [5], [11] has two timescales:
a fast timescale of cascading blackouts and a slow
evolution of the grid. In the fast timescale, OPA rep-
resents transmission lines, loads and generators with
the usual dc load flow approximation. Starting from a
solved base case, blackouts are initiated by independent
random line outages with probability p0. Whenever a
line is outaged, the generation and load are redispatched
using standard linear programming methods. The cost
function is weighted to ensure that load shedding is
avoided where possible. If any lines were overloaded
during the optimization, then these lines are outaged
with a fixed probability p1. The process of redispatch
and testing for outages is iterated until there are no
more outages. The total load shed is, then, the power
lost in the blackout. The modeling of the cascade
neglects many of the cascading processes in blackouts
and the timing of events, but it does represent in
a simplified way a dynamical process of cascading
overloads and outages that is consistent with some basic
network and operational constraints. It is necessary to

provide some variation or noise in the input conditions
to represent the varying conditions of the power grid
so that a realistic variety of cascades can occur. This is
done by making the pattern of loads vary up and down
randomly about the average load, and the magnitude of
this load variation is controlled by the parameter γ.

In the slow timescale, OPA models the complex
dynamics of the transmission grid evolving in response
to a slowly increasing power demand and the increases
in system capacity caused by the engineering responses
to blackouts. The slow dynamics is carried out by
the following small changes applied each time a po-
tential cascading failure is simulated: All loads are
multiplied by a fixed parameter λ that represents the
rate of increase in electricity demand. If a blackout
occurs, then the lines involved in the blackout have
their line flow limits increased slightly by multiplying
by a parameter µ. That is, the parts of the system
involved in the last blackout are upgraded. The grid
topology remains fixed in the upgrade of the lines
to ensure a realistic grid topology of the upgraded
system in a simple way, and avoid the formidable
complexities of realistic automation of the addition
of new lines in transmission system expansion. To
maintain coordination between generation capacity and
transmission capacity, the generation maximum power
increases automatically when the capacity margin is
below a given critical level ∆P/P . The slow timescale
evolving power grid modeled in OPA enable the study
of the grid as a complex system. This distinctive feature
of OPA is discussed in much more detail in [4], [5],
[11].

We now summarize the main parameters of OPA.
This discussion refers to the basic OPA model, without
n-1 constraints [11] or other possible modifications of
the system modeling or operation [12]. A main input
to OPA is a model network, in this case, the 1553 bus
WECC network model [3]. In addition, Table 2 gives
the four basic parameters that control the slow time
evolution of the system in OPA.

TABLE 2. Input parameters for OPA slow time
evolution

λ Daily rate of increase of load demand
µ Rate of upgrade of overloaded lines

after blackout
∆P/P Capacity margin
γ Controls the daily variation of the loads

The WECC data presented in section 2 have already
determined the rate of increase of the demand λ, the
generation margin ∆P/P , and the daily variance of the
loads γ. The rate of upgrade µ is then determined in



Fig. 5. Western interconnect cumulative distribu-
tion of observed blackout size in MW from NERC
data.

order to give a reasonable mean value for the frequency
of the blackouts. There are two other parameters p0
and p1 shown in Table 3 that also affect the frequency
and the detailed properties of the blackout dynamics.
We must determine p0 and p1 in order to match the
historical data for the Western interconnect.

TABLE 3. Key parameters of OPA cascading
dynamics

p0 probability of random initial line outage
p1 probability of an overloaded line outaging

4. Historical data for WECC outages

There are a number of different types of data avail-
able (or potentially available) on blackouts and outages
of the WECC transmission grid. They are all important
for validation of all types of modeling of the blackout
dynamics. The main source of data on blackouts in the
North American grid is the North American Electrical
Reliability Council (NERC). This data, which is inher-
ently filtered by reportability criteria, is available on
the web [6]. Analysis of this data [13], [14], [3] shows
the existence of power law regions in the probability
distribution function and in the rank function of the
blackout size. There are a number of different ways of
characterizing the blackout size, but here, the amount
of load shed associated with the blackout is the main
measure used. Fig. 5 shows a plot of the cumulative
distribution function of the observed blackout size for
the western interconnect together with a fit to the power
law region of the distribution.

Fig. 6. Probability distribution of outages in the first
generation, and the probability distribution of the
total outages after cascading.

Another valuable source of information on failures
is the TADS transmission line outage data for 8864
outages recorded by a WECC utility over a period
of ten years [7]. The value of this TADS data for
validation is noted and the authors are very grateful that
this data has been made available. Because this is the
only data currently available to us, we have to assume
that this data for one WECC utility is representative of
data across the entire WECC. The data for the WECC
utility has been processed [15] to extract information
on cascading events. For this analysis it is necessary to
group the line outages first into different cascades, and
then into different generations or stages within each
cascade. One result of the grouping of the outages
into cascades and generations is that there are 5227
cascades and the longest cascade has 110 generations.
From this analysis, come a series of important char-
acteristics that can be used to compare with the OPA
model results. Some of these characteristics extracted
from the analysis of the cascades are: the probabil-
ity distribution of outages in the first generation, the
probability distribution of the total number of outages
after cascading, and the probability distribution of the
number of generations in the cascades. These results
are plotted in Figs. 6 and 7.

A third type of data used to validate the models
is the λ parameter estimated from the TADS data
that determines the propagation of the cascades. (This
propagation parameter should be distinguished from the
same symbol λ used to denote the load increase rate in
the OPA input.) The way this analysis is carried out is



Fig. 7. Probability distribution of the number of
iterations in the cascades.

Fig. 8. The cascade propagation amount λ as a
function of generation number in a WECC utility.

to divide the cascades into generations and count all the
outages in the cascade that are “children” and divide
this by all the outages that are their “parents” [15]. This
gives the propagation λ averaged over the number of
generations. Fig. 8 shows a plot of the result of this
analysis; that is, the propagation λ as a function of the
generation number.

These characteristics shown in Figs. 5-8 provide
results characteristic of the Western interconnect that
can be be compared to OPA results for validation. If

successful, the OPA model should be able to describe
these data.

5. OPA results on WECC 1553 bus model

Having essentially determined the parameters of
Table 2 directly from the data, the next step is an
exploration of parameters p0 and p1 to get the best
description of the data plotted in Figs. 6-8. The full
list of parameter values is given in Table 4.

TABLE 4. OPA parameters for WECC 1553 bus
model

µ 1.07 Upgrade rate
p0 0.0001 Probability of a random

line failure
p1 0.10–0.05 Probability that an overloaded

line outages
γ 1.15 Controls variance of loads

∆P/P 0.2 Critical generation margin
λ 1.00005 Daily multiplier increasing

load demand

Let us examine the different results from this choice
of parameters. First is the frequency of blackouts. In
OPA and for previous statistical studies, a blackout was
defined to be an load shedding event which has size
S = Load shed/Power demand greater than 0.00001.
However, this definition of blackout size is not the
same as the definition of a reportable blackout from
the NERC point of view, and here we need a blackout
size definition consistent with that used in the NERC
data. The NERC data arise from government incident
reporting requirements. The thresholds for the report
of an incident include uncontrolled loss of 300 MW
or more of system load for more than 15 min from
a single incident, load shedding of 100 MW or more
implemented under emergency operational policy, loss
of electric service to more than 50000 customers for 1 h
or more, and other criteria detailed in U.S. Department
of Energy form EIA-417. The definition for a real
system is complex, but in the present calculations, an
effective criterion is the loss of 300 MW or more.
Therefore, a blackout is an event with S > 0.003.
With this choice of criterion and for the parameters
of Table 4, the frequency of the blackouts is between
0.03 and 0.04, depending on the value of p1. This is
consistent with the value of the blackout frequency
for the western interconnect given in Table 1. Fig. 9
shows a comparison of the cumulative distributions of
blackouts obtained in the OPA results with the NERC
data. The agreement between the data and the OPA
results shown in Fig. 9 is reasonably good.



Fig. 9. Rank function for the normalized load shed from OPA for the WECC 1553 bus network and
parameters of Table 4 compared with the data for the western interconnect.

Fig. 10. The distribution of outages in the first generation and total outages from OPA for the WECC 1553
bus network and parameters of Table 4 compared with the data.

The next step is the comparison of the distribution
of outages in the first iteration and total outages.
Fig. 10 shows this comparison. Again the agreement
is very good and the OPA model seems to give a
remarkable description of these data. It is important
to notice the difference of the initial distribution and
the total one. This difference was clear in the data
shown in Fig. 6, and it is an indication of the nonlinear
hybrid system dynamics involved in cascading. Finally,
Fig. 11 shows a comparison of the distribution in
the number of generations of the cascade and the

propagation parameter λ with data.

The comparisons in Fig. 11 are the least satisfactory
of all the ones presented in this paper. The likely
reason is that the system grid model of 1553 buses is
still too small and cascades die out too soon. Therefore
there is a need to look at larger network models in
order to get a more satisfactory comparison for these
quantities. This is being done by testing how the
results scale with network size, particularly with a
2510 bus WECC model [3].



Fig. 11. The distribution in the number of iterations of the cascade and the parameter λ from OPA for the
WECC 1553 bus network and parameters of Table 4 compared with the data.

6. Discussion of OPA validation

Using WECC parameters and the WECC 1553 bus
network, a very reasonable agreement is obtained be-
tween the statistical data on blackouts from the Western
interconnect and the OPA results. This serves to sub-
stantially validate the OPA model for estimating the
statistical distributions of blackout size in terms of lines
outaged and load shed on this 1553 bus network.

A set of parameters has been found giving sufficient
agreement with WECC data to allow the use of the
1553 bus network case as a reference case to study
the long-term WECC blackout statistics. Using this
model and these parameters, it is now possible to
determine and explore critical clusters of lines that are
more vulnerable lines during cascading events [16] and
metrics associated with large blackout risk [17].

Not so well predicted is the cascade propagation for
later generations of the cascade. We strongly suspect
that this discrepancy can be resolved by using larger
network models of WECC, and we are continuing to
investigate how the match of OPA with the WECC data
scales with the size of the system model.

OPA simply represents only one cascading failure
mechanism, namely cascading line overloads and out-
ages, using standard and basic power system modeling
assumptions such as DC load flow and LP generator
redispatch. However, OPA is distinguished from other
cascading simulations by also representing the complex
feedback by which the power system slowly evolves
and self-organizes over time, responding with system
upgrades to both load growth and the blackouts. It

is well known in the context of control theory that
feedback loops strongly determine system performance
and that feedback makes the system performance rel-
atively insensitive to the modeling of the plant being
controlled. The analogy between complex systems and
control systems makes it plausible to suggest that the
modeling of the complex system feedback loop that
regulates the long-term system reliability may well be
crucial for the promising results in validating OPA on
the WECC, and that modeling the complex systems
feedback in OPA makes the results less sensitive to
modeling of the cascading outage mechanisms.
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