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Abstract

Critical infrastructures display many of the characteristic
properties of complex systems. They exhibit infrequent large
failures events that often obey a power law distribution in
their probability versus size.  This power law behavior
suggests that conventional risk analysis does not apply to
these systems.  It is thought that some of this behavior comes
from different parts of the systems interacting with each other
both in space and time.  While these complex infrastructure
systems can exhibit these characteristics on their own, in
reality these individual infrastructure systems interact with
each other in even more complicated ways.  This interaction
can lead to increased or decreased risk of failure in the
individual systems. To investigate this, we couple two
complex system models and investigate the effect of the
coupling on the characteristic properties of the systems such
as the probability distribution of events.

1. Introduction

It is fairly clear that many important infrastructure
systems exhibit the type of behavior that has come to be
associated with “Complex System” dynamics.  These
systems range from electric power transmission and
distribution systems, through communication networks,
commodity transportation infrastructure and arguably all the
way to the economic markets themselves.  There has been
extensive work in the modeling of some of these different
systems. However, because of the intrinsic complexities
involved, modeling of the interaction between these systems
has been limited [1,2].  While understandable from the
standard point of view that espouses understanding the
components of a large complex system before one tries to
understand the entire system, this approach can unfortunately
overlook important consequences of the coupling of these
systems that impact their safe operation and overlooks
critical vulnerabilities of these systems.   At the same time,
one cannot simply take the logical view that the larger
coupled system is just a new larger complex system because

of the heterogeneity introduced by the coupling of the
systems.  While the individual systems may have a relatively
homogeneous structure, the coupling between the systems is
often fundamentally different both in terms of spatial
uniformity and in terms of coupling strength (Figure 1).  This
in the most extreme case leads to uncoupled systems but in
the more normal region of parameter space in which the
inter-system coupling is weaker or topologically different
then the intra-system coupling can lead to important new
behavior. Understanding the effect of this coupling on the
system dynamics is necessary if we are to accurately develop
risk models for the different infrastructure systems
individually or collectively.

Figure 1: Cartoon of two homogeneous systems
with a heterogeneous coupling

Examples of the types of potential coupled infrastructure
systems to which this would be relevant include power-
communication systems, power-market systems,
communication-transportation systems, and even market-
market systems.  Interesting examples of these interactions
are discussed in ref. [3]. The effect of this coupling can be
critical and obvious for systems that are strongly coupled
such as the power – market coupled system.  Perturbations in
one can have a rapid and very visible impact on the other.  In
fact, in many ways such systems are often thought of as one
larger system even though the coupling is not homogeneous
and each of the component systems (namely the market and
the power transmission system) can have their own separate
perturbations and dynamics.   For other less tightly coupled
systems, such as power-communications systems, the effect
can be much more subtle but still very important.  In such
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systems small perturbations in one might have very little
obvious effect on the other system, yet the effect of the
coupling of the two systems can have a profound effect on
the risk of large, rare disturbances.

In this paper, we will present results from a dynamical
model of coupled complex systems.  This model has dynamic
evolution and many of the characteristics found in complex
systems.

Many complex systems are seen to exhibit similar
characteristics in their failures. While it is useful and
important to do a detailed analysis of the specific causes of
these failures such as the failure sequence for individual
blackouts, it is also important to understand the global
dynamics of the systems like the power transmission
network.  This allows some insight into the frequency
distribution of these events (e.g. blackouts) that the system
dynamics creates.  There is evidence that global dynamics of
complex systems is largely independent of the details of the
individual triggers such as shorts, lightning strikes etc in
power systems. In this paper, we focus on the intrinsic
dynamics of failures and how this complex system dynamics
impacts failure risk assessment in interconnected complex
systems.  It is found, perhaps counter intuitively, that even
weak coupling of complex systems can have adverse effects
on both systems and therefore risk analysis of an isolated
system must be approached with care.

Several particular issues induced by the interdependence
of systems will be addressed in this paper. The first one is
how coupling between the systems modifies conditions for
safe operation. These systems are characterized by a critical
loading [4, 5]. They must operate well below this critical
loading to avoid “normal accidents” [6] and large-scale
failures. We will explore how the coupling between systems
changes the value of this critical loading.
We will also consider the effect of the heterogeneity
introduced through in two different ways, first through the
different properties of each individual system, such as having
different critical points, and second, through the coupling of
the systems.

The rest of the paper will be organized as follows: Section
2 reviews some of the characteristics of complex systems.
Section 3 describes the dynamic model with results from that
model, followed by section.   Section 4 describes the mean
field results for the dynamic model, followed by sections 5
and 6 that describe results from identical coupled systems
and asymmetric systems respectively.  Finally, section 7
discusses the character of the transcritical bifurcation and
section 8 has a discussion of the implications of these results
and conclusions.

2. Background

The following work is a continuation of previous work on
the Demon model of coupled infrastructure systems [7].
Here, we will extend the model to consider arbitrary network
structures. The previous work was centered on a square grid
network. Therefore the basic coupling was from each node to
four neighbors. The model was a simple extension of Drossel
model [8] for forest fires. In this model, the propagation
velocity of a disturbance is Pnf where Pn is the probability of

a disturbance to propagate from a node to another node and f
the number of available nodes to propagate from a given
node. In this model f is an important parameter to understand
the propagation of the disturbances and it is not well
determined. If K is the averaged number of nodes coupled to
a single node in a given network, a first guess for f is f = K–1,
because the disturbance is already coming from one of the
nodes that the failing node is coupled. In the case of the
square network it has been found that f = 2.66 is a better
value than 3. Therefore, we will vary K  in order to
understand what are possible values for f.

To do so, we consider several network structures. In Fig.
2a, we show an example of two coupled hexagon-like
networks during the development of a cascading failure. The
green nodes represent operating components of the system. A
similar plot in Fig. 2b shows two coupled open tree networks

Another aspect to explore is how the power law of the pdf
of failures depends on K, if it does at all.

Finally the more interesting new aspect to explore is the
coupling of heterogeneous networks with different K and
number of nodes. In practical problems of interdependence
between infrastructure systems, each infrastructure has its
own structure and the ways two of them are coupled are non-
uniform. We will use the Demon model in studying this
situations and understanding the propagation of disturbance
in these heterogeneous systems.

Figure 2a: Two coupled hexagon systems during
cascading failure. Figure 2b : Two coupled tree

systems during cascading failure coupling

In all these studies, we will be using the mean field theory
for the coupled systems developed in ref. [7] as guidance and
we will investigate its effectiveness and limitations.
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3. The Demon model

The infrastructure model discussed here, the Demon
model, is based on the forest fire model of Bak, Chen and
Tang [9] with modifications by Drossel and Schwabl [8].

For a single system, the model is defined on a 2-d
network. Examples of such networks are shown in Figs. 1
and 2. In Table I we have summarized the properties of the
different networks considered.  Nodes represent components
of the infrastructure system and lines represent the coupling
between components. These components can be operating,
failed or failing. The rules of the model are for each time step
are:

1) A failed component is repaired with probability Pr.

2) A failing component becomes a failed one

3) An operating component fails with probability Pn if
at least one of the nearest components is failing.

4) There is a probability P f that any operating
component fails.

We consider a coupled system by taking two of these 2-d
networks and adding another rule:

5) A component fails in System 1 fails if the associated
component in System 2 is failed or failing. The
same applies for a component in system 2.

Using these rules, numerical calculations can be carried out.
We will consider first the mean field theory for this model
and in later sections we will discuss the numerical results.

Table I Network properties
Type K Number of nodes

Open 3-branch Tree 2 3070

Closed 3-branch Tree 3 3070

Open 5-branch Tree 4 190

Square 3.96 10000

Hexagon 5.9 4681

4. Mean field theory: steady state

Let us consider first the mean field theory for two coupled
systems. This is a generalization of the calculation done in

Ref. [8]. Let O i( ) t( )  be the number of operating

components in system i at time t normalized to the total
number of components N(i). In the same way, we can define
the normalized number of failed components, F(i)(t), and the
failing ones, B(i)(t). The mean field equations for this coupled
system are:

B 1( ) t +1( ) = Pf 1( )O 1( ) t( ) + Pn1( ) f 1( )O 1( ) t( )B 1( ) t( )

+
c 1( )

κ
g2O

1( ) t( ) B 2( ) t( ) + F 2( ) t( )( )
(1)

€ 

F 1( ) t +1( ) = 1− Pr
1( )( )F 1( ) t( ) + B 1( ) t( )

(2)

O 1( ) t +1( ) = 1− Pf
1( )( )O 1( ) t( ) + Pr 1( )F 1( ) t( )

− Pn
1( ) f 1( )O 1( ) t( )B 1( ) t( )

−
c 1( )

κ
g2O

1( ) t( ) B 2( ) t( ) + F 2( ) t( )( )
(3)

B 2( ) t +1( ) = Pf 2( )O 2( ) t( ) + Pn 2( ) f 2( )O 2( ) t( )B 2( ) t( )

+κc 2( )g1O
2( ) t( ) B 1( ) t( ) + F 1( ) t( )( )

(4)

€ 

F 2( ) t +1( ) = 1− Pr
2( )( )F 2( ) t( ) + B 2( ) t( )

(5)

O 2( ) t +1( ) = 1− Pf
2( )( )O 2( ) t( ) + Pr 2( )F 2( ) t( )

− Pn
2( ) f 2( )O 2( ) t( )B 2( ) t( )

−κc 2( )g1O
2( ) t( ) B 1( ) t( ) + F 1( ) t( )( )

(6)

Here κ ≡ N 1( ) N 2( ) , g1 is the fraction of nodes in system 1

coupled to system two, and g2 is the fraction of nodes in
system 2 coupled to system 1. Of course, these equations are
consistent with the conditions:

O i( ) t( ) + B i( ) t( ) + F i( ) t( ) =1
(7)

In the limit with no failure triggers, Pf
(i) = 0, and for a

steady state solution, the system of equations can be reduced
to two coupled equations,

1− Pn
1( ) f 1( )O 1( )  1−O

1( )( ) = a
1( )

κ
g2 1−O

2( )( )O 1( )

(8)

1− Pn
2( ) f 2( )O 2( )  1−O

2( )( ) =κa 2( )g1 1−O
1( )( )O 2( )

(9)

where

a i( ) =
c i( ) 1 + Pr i( )( )

Pr
i( )

(10)
It is important to note that the relevant parameter involves the
ratio of the coupling between the systems and the repair rate.
The reason for that is the particular form of rule 5) that
assumes that a failure can be triggered by both failed and
failing components in the other system. If only failing
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components had been considered, the relevant parameter
would be the coupling. For real systems, a realistic rule
should probably lie in between these two extremes.

If a(i) ≠ 0 and κ =1, then O(1) = 1 implies O(2) = 1, that is,
the systems are decoupled. Therefore, to have truly coupled
systems, system 1 must be in a supercritical state. Such a case
with a(i) ≠ 0 is more complicated to solve.

First, we have assumed identical systems symmetrically
coupled. That is, all parameters are the same for the two

systems, f 1( ) = f 2( )
, 

€ 

a 1( ) = a 2( )
, κ  = 1 and 

€ 

Pn
1( ) = Pn

2( )
.

This leads to identical solutions for the two systems in steady
state. Therefore, we have the following stable solutions:

€ 

O i( ) =
1 for ˆ g ≤ 1
1
ˆ g 

for ˆ g >1

 
 
 

  
(11)

€ 

F i( ) =

0 for ˆ g ≤1
ˆ g −1

ˆ g 1 + Pr( )
for ˆ g > 1

 

 
 

  
(12)

€ 

B i( ) =

0 for ˆ g ≤1
ˆ g −1

ˆ g 1 + Pr( )
Pr for ˆ g > 1

 

 
 

  
(13)

Here, 

€ 

ˆ g  is the control parameter and is given by

€ 

ˆ g = Pn f +
c 1 + Pr( )

Pr

(14)

5. Coupling of two identical systems

We have tested the results from the mean field theory by
comparing them with numerical results from some of the
two-coupled identical systems networks listed in Table I. The
results for the averaged number of operating components are
shown in Fig. 3. Results have been obtained for fixed
Pr = 0.001, c = 0.0005, and Pf = 0.00001 and we have varied
the propagation parameter Pn. The results show very good
agreement with the mean field theory results as K increases.
For K = 2, the system are practically 1–d and the mean field
theory is not really applicable.

The density of operating components is practically the
same in both systems. This is logical because they are
identical systems and the only symmetry-breaking feature is
the probability of spontaneous failures that is zero in the
second system.
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Figure 3: Fraction of operating components for

various configurations.

Near the critical point the pdf of the sizes are similar with
a power law region with exponent close to -1. For the forest
fire model, which corresponds to the present model for the
uncoupled square grid, Drossel et al [8] showed that the
exponent is -1. Here we need to do more detailed calculations
in the limit of large grid and small probability of random
failure in order to understand those exponents. In Fig. 4, we
show an example of the pdf of failure sizes for three different
coupled network structures.
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Figure 4: PDFs for 3 coupled systems

Perhaps most important is the effect of the coupling of the
systems on the point at which the power law tails develop,
the so called critical point.  The point is characterized by the
Pn value at which the percolation transition occurs as
discussed earlier.   This point can be measured in a variety of
ways, including changes in the equilibrium state as discussed
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in the mean field calculations and changes in the propagation
characteristics as discussed in section 6.  These different
measures give different critical points and even slightly
different functional dependencies on the coupling strength.
These differences will be discussed elsewhere.  Figure 5
shows the change in the critical propagation parameter Pn as
a function of the coupling strength as measured from the
density of unfailed components.  The relationship is not a
linear dependency and is consistent with a weak power law
function with an exponent of approximately -0.4.  This shows
that the impact of even a very small coupling between
systems can be significant. The same result, characterized
using the propagation measure λ (as discussed later in section
6) gives a similar figure with an offset in the actual value of
the critical point varying between 0.05 and 0.1 and a weaker
low coupling dependence.
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Figure 5: Critical Pn as coupling strength c varies

6. Coupling of different systems

Let us start from two squares with different numbers of
nodes. This is the simplest way of breaking the symmetry
between systems. We choose the geometrical dimensions of
the systems to be the same and the number of nodes on a side
of the square to be a multiple of the other. Therefore, we
couple only the nodes that geographically are on top of each
other. We have used a 100x100 square coupled to a 20x20
square and to a 50x50 square.  An example of the first pair of
grids is shown in Fig. 6 at a given time during the evolution.
The green nodes represent working components and the
black ones the failed components.

Figure 6: Coupled asymmetric systems with
symmetry broken by course graining one system.

First, we use the same parameters for both squares, in
particular Pr = 0.001, c = 0.0005, and Pf = 0.00001. Results
for the densities of operating components are shown in Fig.
7.
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Figure 7: Analytic and computational results for
operating components with asymmetric system

configurations

Now the densities of the operating components are not the
same in the two systems. In this calculation System 1 was the
100x100 square and System 2 the square with less nodes.
System 2 has normally a lower density of operating
components.  Numerical results compare well with the mean
field theory. For this problem, the corresponding version of
Eqs. (8) and (9) are

1− Pn f O
1( )  1−O

1( )( ) = 1
κ
a 1−O 2( )( )O 1( ) (15)

1− Pn fO
2( )  1−O

2( )( ) = a κ 1−O 1( )( )O 2( ) (16)

where κ  is the ratio of the number of nodes in the large
system to the number of nodes in the small system.  Now
these equations cannot be solved analytically but they are
easily solved numerically. The results for the two-coupled
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cases considered here are plotted in Fig. 7 and compared with
the numerical results.
We have also made a scan in the coupling coefficient c and
compared the mean field theory and numerical results in Fig.
8.
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Figure 8: Fraction of operating components vs.
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The comparison is good for large coupling coefficients. At
small values the coupling starts competing with the random
triggers. For one of the numerical calculations only system 1
has random failures, therefore the density of operating
components in system 2 goes to one when the coupling goes
to zero. In the second calculation there are random failures in
both grids. In this case the two grids converge to the same
value as the coupling goes to zero.

7. The critical point as a transcritical
bifurcation

The critical point of the mean field model (1)-(6) at ĝ  = 1

can be understood as a transcritical bifurcation. The model
(1) - (6) has two equilibria

O1
1( ) ,F1

1( ) ,B1
1( )( ) = 1, 0, 0( )  (17)

O2
1( ) ,F2

1( ) ,B2
1( )( ) = 1

ĝ
, ĝ −1
ĝ 1+ Pr( )

, ĝ −1
ĝ 1+ Pr( )

Pr






(18)

The equilibria coincide at ĝ  = 1 and as ĝ  increases through

1 the second equilibrium passes through the fixed first
equilibrium. For the subcritical case ĝ  < 1, the first

equilibrium is stable and the second equilibrium is
nonphysical since O(i)  > 1. For the supercritical case ĝ  > 1,

the second equilibrium is stable and the first equilibrium is
unstable. At the critical case of ĝ  = 1, the linearization at the

bifurcating equilibrium has an eigenvalue of one.

To confirm these claims, we choose the state vector to be
(B(1) , F (1) , B(2) , F (2) ) and use (7) to eliminate O(i) in (1), (2),
(4), (5). The parameters chosen are κ = 1, N1 = N2, c

(1) = c(2) =

c, ĝ1 = ĝ2 = ĝ , f(1) = f(2) = f , Pf
1( ) = Pf

2( ) = 0 , Pr
1( ) = Pr

2( ) = Pr .

We then linearize  (1), (2), (4), (5) about the first equilibrium
and compute the maximum eigenvalue to be

λmax1 =
1
2
1− Pr + Pn f + c + 1− Pr − Pn f − c( )2 + 4c( )

This eigenvalue goes through 1 when ĝ =1.

An issue remains whether this bifurcation point is directly
related to the cascading threshold. To measure the cascade
propagation we measure

λB t( ) = B t( )
B t −1( )

It is interesting to measure this λΒ in the two different
systems. An example is shown in Fig. 9. Systematically, the
λB measure in the small system is below 1 while in the large
system becomes greater than 1 at a critical point.
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Figure 9: λ plotted across critical point for both
systems.

Therefore, an operator in the small system just by
measuring failures in their system feels that it is in a safe
operation regime when he is not. This result emphasizes the
need for a global parameter that describes the status of the
overall system.

One can see that both systems are supercritical in spite of
the values of l, by looking at the pdf of the size of the
events. In Fig.10 we have plotted an example of such pdf. It
includes the one measured in the system 1, the one in
system 2, and the one combined. The there exhibit a clear
power law region with exponential tail as is typical in the
coupling of identical systems.
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suggests both critical despite λ < 1.

8. Discussion and Conclusions

Modern societies rely on the smooth operation of many of
the infrastructure systems. We normally take them for
granted. However, we are typically shocked when one of
these systems fails. Therefore, understanding these systems is
a high priority for ensuring security and social wellbeing.
Because none of these infrastructure systems operate in a
vacuum, understanding how these complex systems interact
with each other gains importance when we recognize how
tightly coupled some of these systems are.  Because of the
great complexity of even the individual systems it is
unrealistic to think that we can dynamically model
interacting infrastructure systems in full detail at present.

In this paper, we have investigated some of the general
features of interactions between infrastructure systems by
using very simple models. We look for general dynamical
features without trying to capture the details of the individual
systems.  In the future we will try to build a hierarchy of
models with increasing levels of detail for these systems. 

Here, we have explored the Demon model, which can
work in a self-organized critical state. The Demon model has
a percolation threshold above which cascading failures of all
sizes are possible. It has been found that symmetric coupling
of these systems actually decreases the threshold nonlinearly.
That is, it makes access to the critical point easier, which
means that the systems when coupled are more susceptible to
large-scale failures and a failure in one system can cause a
similar failure in the coupled system. The parameter λ, can
be also used to characterize the cascading threshold in the
coupled systems. This suggests the existence of a metric that
can be generalized for practical application to more realistic
systems.

For the Demon model it is found that large failures are
more likely to be "synchronized" across the two dynamical

systems, which is likely to be the reason that the power law
found in the probability of failure with size becomes less
steep as the coupling increases.  This means that in the
coupled systems there is greater probability of large failures
and less probability of smaller failures. 

With the Demon model other important aspects of the
infrastructure can be explored, such as non-uniform and non-
symmetric couplings. This will be the object of future
studies.

With this model there is a large parameter space that must
be explored with different regions of parameter space having
relevance to different infrastructure systems.  There is also a
rich variety of dynamics to be characterized.  Characterizing
the dynamics in the different regimes is more then an
academic exercise since as we engineer higher tolerances in
and otherwise optimize individual systems as well as making
the interdependencies between systems stronger we will then
be exploring these new parameter regimes of the coupled
systems the hard way, by trial and error.   Unfortunately error
in this case has the potential to lead to global system failure.
By investigating these systems from this high level, we hope
that regimes to be avoided can be identified and mechanisms
for avoiding them can be explored. 
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