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Abstract
We examine correlations in a time series of electric
power system blackout sizes using scaled window
variance analysis and R/S statistics. The data shows
some evidence of long time correlations and has Hurst
exponent near 0.7. Large blackouts tend to correlate with
further large blackouts after a long time interval. Similar
effects are also observed in many other complex systems
exhibiting self-organized criticality. We discuss this
initial evidence and possible explanations for self-
organized criticality in power systems blackouts. Self-
organized criticality, if fully confirmed in power
systems, would suggest new approaches to understanding
and possibly controlling blackouts.

1. Introduction

Electric power transmission networks are complex
systems that are commonly run near their operational
limits. Such systems can undergo non-periodic major
cascading disruptions that have serious consequences.
Individually, these disruptions or blackouts can be
attributed to specific causes, such as lightning strikes,
ice storms, equipment failure, shorts through untrimmed
trees, excessive customer demand, or unusual operating
conditions. However, an exclusive focus on these
individual causes can overlook the global dynamics of a
complex system in which repeated major disruptions
from a wide variety of sources are a virtual certainty.
Indeed, large scale disruptions can be intrinsic to the
global system dynamics as is observed in systems
displaying Self-Organized Criticality (SOC) [1].  A SOC
system is one in which the nonlinear dynamics in the
presence of perturbations organize the overall average
system state near to, but not at, the state that is
marginal to major disruptions.  SOC systems are
characterized by a spectrum of spatial and temporal scales

of the disruptions that exist in remarkably similar forms
in a wide variety of physical systems.  In these systems,
the probability of occurrence of large disruptive events
decreases as a power function of the event size.  This is
in contrast to Gaussian systems in which the probability
decays exponentially with event size.  Therefore, the
application of traditional risk evaluation methods to
SOC systems is bound to underestimate the risk of large
events.

It is difficult to directly determine whether a system
has SOC type dynamics.  However, we can explore the
existence of correlations of events over long time scales
to indicate whether the system has non-trivial complex
dynamics with non-Gaussian properties. We also
consider the probability distribution function of
disturbance sizes.

2. Detecting long time correlations in
time series

A time series is said to have long-range dependence if
its autocorrelation function falls off asymptotically as a
power law.  This type of dependence is difficult to
determine because the noise tends to dominate over the
signal for long time lags.  Over the last decade, several
techniques have been developed to overcome this
problem.  One such technique, and chronologically the
first one, is the rescaled range statistics (R/S statistics)
proposed by Mandelbrot and Wallis [3] and based on a
previous hydrological analysis by Hurst [4]; another is
the scaled window variance technique [2].

The R/S statistics or the scaled window variance
technique considers blocks of m successive points in the
integrated time series and measure how fast the range or
standard deviation of the blocks grows as m increases.
In the case of the scaled window variance technique, we
begin by considering a time series
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It can be shown that in the case of a time series X
with an autocorrelation function that has an algebraic

tail, the function σ m  scales as σ m
Hm∝ , where H is

the Hurst exponent.  For 1 > H  > 0.5, there are long-
range time correlations, and for 0.5 > H > 0, the series
has long-range anticorrelations.  If H = 1.0, the process
is deterministic.  When the data is uncorrelated, the
Hurst exponent is 0.5.

A constant H parameter over a long range of time lag
values is consistent with self-similarity of the signal in
this range [5] and with an autocorrelation function that
decays as a power of the time lag with exponent
β=2 – 2H.  In comparison with the direct determination
of the autocorrelation function or other techniques of
calculating the value of H, the scaled window variance
analysis is robust.

3. Analysis of blackout data

We define blackouts as disturbances of the power
transmission system that cause loss of power to
customers.  Every year, the North American Electrical
Reliability Council (NERC) publishes a documented list
summarizing major disturbances [6].  They are of diverse
magnitude and the causes vary.  It is not clear how
complete this data is, but it is the best-documented
source that we have found for disturbances in the North
American power transmission system.

Table 1. Causes of major blackouts by region 1994-97.

Cause W NE MW SE Total

Weather – 25% 6 3 13 4   26
Equipment fails – 47% 26 15 6 3   50
Human error – 12% 4 5 4 0   13
Vandalism – 9% 4 4 3 0   11
Low reserves – 7% 0 5 1 0    6

We reviewed NERC records for the years 1994
through 1997 inclusive to determine the causes for recent
major blackouts that were centered on the transmission
system. The breakdown of 106 major blackouts for 1994
through 1997 is shown in Table 1. The average time to
restore power was approximately 3 hours. The number
of major blackouts each year ranged from 21 to 29 with
an average of 27.

In trying to understand the global dynamical
properties of the North American power transmission
grid, we have done a simple correlation analysis of the
reported blackouts between January 1993 and July 1998.
We constructed time series with the resolution of a day
for the number of disturbances and for four different
measures of the blackout size.  The blackout size was
measured by the energy unserved (MWh), the amount of
power lost (MW), number of customers affected and the
restoration time. (Energy unserved was calculated from
the NERC data by multiplying the power lost by the
restoration time.)   For example, the time series for
power lost is shown in Figure 1 and the time series for
energy unserved is shown in Figure 2.  Blackouts with
incomplete data (power lost or restoration time missing)
were not included in any of the time series.

To these five series, the number of blackouts plus the
four measures of blackout size, we have applied the
scaled windowed variance analysis technique and the R/S
statistics to determine their respective Hurst exponents
H.  Both methods give consistent answers.  There is a
clear range of more that one decade of time lags (from

about 30 days to 500 days)  over which the averaged σ m

shows a clear power dependence on time. Figure 3 shows

the averaged σ m  as a function of time delay for the

number of blackouts and the energy unserved.  The Hurst

exponents obtained by fittingσ m  are shown in Table 2.

Table 2. Hurst exponents of blackout numbers and sizes

     Time series Hurst exponent H

Number of blackouts 0.52
Energy unserved (MWh) 0.70
Power lost (MW) 0.58
Number of customers 0.69
Restoration time 0.67

 For the time series of the number of blackouts, the
Hurst exponent is about 0.5.  This value indicates that
there is no correlation between individual triggers of the
blackouts.  This is not surprising and is perhaps what
could be expected from the variety of random causes for
the blackouts.



On the other hand, the analysis of the time series of
blackout sizes show a clear existence of long range time
correlations, as indicated by the Hurst exponents greater
than 0.5 in Table 2.  The time record considered has only
1920 points.  To test the significance of the results for
the blackout sizes, a random scrambling of the time
series leads to H exponents that range from 0.49 to 0.55.
They are well below the values obtained for the original
records, which suggest that their deviation from 0.5 is
significant.  The sequences do not show any signs of
periodicity that could contaminate the determination of
H.

We also used the NERC data from January 1993 to
July 1998 to estimate the probability distribution
function of the blackout sizes.  For example, Figure 4
shows the probability distribution of the energy unserved
in the blackouts.  The fitted line shows that the
probability decreases with power –0.98.  For the number
of customers affected, the probability distribution
function decays as a –0.65 power and for the restoration
time the power is –1.13.  For each of these measures of
blackout size, the probability falls off relatively slowly
with the blackout size.  Since the exponents are clearly
above –2, the variance of the blackout size is unbounded.
Furthermore, since the powers are close to –1, even the
mean could be unbounded.  These results imply that
blackouts of the size of the full grid are possible.

4. Possible explanation of power system
self-organized criticality

We suggest a qualitative account of the structure and
effects in a large scale electric power transmission
system which could give rise to SOC.  The transmission
system contains many components such as generators,
transmission lines, transformers and substations.  Each
component experiences a certain loading each day and
when all the components are considered together they
experience some pattern or vector of loadings. The
pattern of component loadings is determined by the
power system operating policy and is driven by the
aggregated customer demands at the substations.  The
power system operating policy includes short time frame
actions such as generator dispatch as well as longer time
frame actions such as improvements in procedures and
planned outages for maintenance. The operating policy
seeks to satisfy the customer demands at least cost.  The
customer demand has daily and seasonal cycles and a
secular increase.  Moreover, the patterns of customer
demand change due to the evolution of bulk power
markets and geographic shifts in population and
industry.

Events are either the limiting of a component loading
to a maximum or the zeroing of the component loading

if that component trips or fails.  Events occur with a
probability that depends on the component loading.  For
example, the probability of transformer failure generally
increases with loading.  Another example is that an
operator redispatching to limit power flow on a
transmission line to its thermal rating could be modeled
as probability zero below the thermal rating of the line
and probability one above the thermal rating.

Each event is a limiting or zeroing of load in a
component and causes a redistribution of power flow in
the network and hence a discrete increase in the loading
of other system components.  Thus events can cascade.
If a cascade of events includes limiting or zeroing the
load at substations, it is a blackout.  A stressed power
transmission system experiencing an event must either
redistribute load satisfactorily or shed some load at
substations in a blackout.  A cascade of events leading to
blackout usually occurs on a time scale of minutes to
hours and is completed in less than one day.

It is customary for utility engineers to make
prodigious efforts to avoid blackouts and especially to
avoid repeated blackouts with similar causes.  These
responses to a blackout occur on a range of time scales
longer than one day.  Responses include repair of
damaged equipment, more frequent maintenance, changes
in operating policy away from the specific conditions
causing the blackout, installing new equipment to
increase system capacity, and adjusting or adding system
alarms or controls.  The responses reduce the probability
of events in components related to the blackout, either
by lowering their probabilities directly or by reducing
component loading by increasing component capacity or
by transferring some of the loading to other components.
The responses are directed towards the components
involved in causing the blackout.  Thus the probability
of a similar blackout occurring is reduced, at least until
load growth degrades the improvements made. There are
similar, but less intense responses to unrealized threats
to system security such as near misses and simulated
blackouts.

The pattern or vector of component loadings may be
thought of as a system state. Maximum component
loadings are driven up by customer demand trends via the
operating policy.  High loadings increase the chances of
cascading events and blackouts. The loadings of
components involved in the blackout are reduced or
relaxed by the responses to security threats and
blackouts.  However, the loadings of some components
not involved in the blackout may increase. These
opposing forces driving the component loadings up and
relaxing the component loadings are a reflection of the
standard tradeoff between satisfying customer demands
economically and security. The opposing forces apply
over a range of time scales.  We suggest that the



opposing forces, together with underlying growth in
customer demand and diversity give rise to a dynamic
equilibrium and conjecture that this dynamic equilibrium
is SOC.

We briefly indicate the roughly analogous structure
and effects in an idealized sand pile model that is
expected to show SOC [7].  Consider a large, idealized
sand pile that has grains of sand added at a continuously
varying location. When the local maximum gradient gets
too large, sand at that location is more likely to topple.
Events are the toppling of sand and cascading events are
avalanches.  The system state is a vector of maximum
gradients at all the locations in the sand pile.  The
driving force is the addition of sand, which tends to
increase the maximum gradient, and the relaxing force is
gravity, which topples the sand and reduces the
maximum gradient. SOC is a dynamic equilibrium in
which avalanches of all sizes occur and in which there
are long time correlations between avalanches.  The
analogy between the sand pile and the power system is
shown in Table 3.  There are also some distinctions
between the two systems.  In the sand pile, the
avalanches are coincident with the relaxation of high
gradients. In the power system, each blackout occurs on
fast time scale (less than one day), but the knowledge of
which components caused the blackout determines which
component loadings are relaxed both immediately after
the blackout and for some time after the blackout.

Table 3. Analogy between power system and sand pile

Power system Sand pile

system state loading pattern gradient profile
driving force customer demand addition of sand
relaxing force response to blackout gravity
event limit flow or trip sand topples

5. Conclusion

The time series of blackout sizes presented above
show long-range time correlations as well as power
dependent tails in their distribution functions.  These
initial results suggest that the global dynamics of the
power transmission system are those of a complex
dynamical system.  Such system may be close to a SOC
system.  The results are consistent with SOC, but there
is not yet enough evidence to fully confirm this. Longer
and more detailed records of blackouts would be helpful,
as well as more refined methods to distinguish SOC
dynamics from data.

The correlation results suggest that large blackouts
are correlated with further large blackouts after a long
time interval.  In general, the SWV and R/S analyses

presented here go beyond cumulative statistics such as
the probability density function to reveal some temporal
information about the system dynamics.

We have also suggested a qualitative description of
the global dynamics of a large scale electric power
system. These global dynamics are broadly analogous to
the dynamics of an idealized sand pile model that is
expected to show SOC.  This outline of a possible
explanation of SOC in a power system shows the
opposing forces that could give rise to a dynamic
equilibrium with SOC properties.  The opposing forces
are, roughly speaking, the trends in load demands
weakening parts of the system and the responses to
blackouts strengthening parts of the system. It is
interesting to reflect that responses to a blackout are
usually regarded as an outcome of a detailed investigation
of particular blackout causes. However, the more global
view suggested here sees responses to blackouts as an
intrinsic part of the global system dynamics.

If electric power transmission systems are found to
obey SOC like dynamics, this would have a number of
important implications.  First and perhaps most striking
is the intrinsic unavoidability of cascading events in
such a system when driven near its operational limits.
When an event occurs the natural tendency is to focus on
the cause of that event and try to prevent it from
happening again.  While often justified, this overlooks
the fact that there will always be unforeseen events that
will act as triggers. Reaction to a trigger which has
already occurred will not impact another type of trigger
and the potential severity of a resulting disruption
depends less on the individual trigger (or sequence of
events) then it does on the overall system state. This
means that the global system state is at least as
important in assessing a system’s vulnerability to
disruption as the state of some individual components.   

On a more reassuring note, because of the apparently
universal nature of SOC systems, we can learn a great
deal about their dynamics from studying simple
paradigmatic SOC models. Indeed, our qualitative
description of SOC dynamics is a first step towards a
more quantitative simulation model that captures the
essentials of the global complex dynamics of the power
system.  The SOC or other complex dynamics in such a
model would provide insights into global power system
dynamics and allow more critical examination of
explanations of SOC. Such a model could also serve as a
test bed for developing methods for predicting and even
controlling the overall system state to reduce the chances
of large blackouts. One can even speculate about the
possibility of determining statistical precursors to
blackouts, which could allow real time corrections to
prevent large blackouts.



Power transmission systems are large, complicated
interconnected structures which underpin our society.
Our initial results are suggestive of SOC in the global
dynamics governing blackouts and we look forward to
probing these complex dynamics further.
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Figure 1. Blackout power loss time series.
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 Figure 2. Blackout  energy unserved time series.
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Figure 3. Scaled windowed variance analysis of the number of blackouts

and energy unserved.
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Figure 4. Probability distribution function of energy unserved
 for North American blackouts 1993-1998.


