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Abstract
We examinecorrelations in atime series of electric
power system blackout sizes usingscaled window
variance analysis and R/S statistics. Thedata shows
someevidence olong time correlations and has Hurst
exponent near 0.7. Large blackouts tendaaelate with
further large blackouts after a long time interv&imilar
effects are also observed in many otbhemplexsystems
exhibiting self-organizedcriticality. We discussthis
initial evidence and possible explanations for self-
organizedcriticality in power systems blackoutsSelf-
organized criticality, if fully confirmed in power
systems, would suggest new approachemtterstanding
and possibly controlling blackouts

1. Introduction

Electric powertransmission networkgre complex
systems thatre commonly runnear their operational
limits. Such systemsan undergo non-periodic major
cascadingdisruptions thathave serious consequences.
Individually, these disruptions or blackouzan be
attributed to specific causes, suchlightning strikes,
ice storms, equipment failure, shorts througttrimmed
trees, excessive custom#ggmand, orunusualoperating
conditions. However, an exclusive focus dhese
individual causes caaverlook the globatlynamics of a
complex system in whichiepeatedmajor disruptions
from a wide variety of sourcesre avirtual certainty.
Indeed,large scale disruptionsan beintrinsic to the
global system dynamics as is observed isystems
displaying Self-Organized Criticality (SOC) [1]. A SOC
system is one in which the nonlinedynamics in the
presence ofperturbations organiz¢he overall average
system statenear to, but not at, the state that is
marginal to major disruptions. SOC systems are

characterized by a spectrum of spatial and temporal scales X = { Xt:t =12,..., n} .
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of the disruptions that exist iremarkablysimilar forms

in a wide variety of physical systems. In thegstems,
the probability ofoccurrence oflarge disruptive events
decreases as a powenction of the event size. This is
in contrast to Gaussian systems in which the probability
decaysexponentially with event size. Therefore, the
application of traditional risk evaluation methods to
SOC systems is bound to underestimate the ridkrgé
events.

It is difficult to directly determine whether system
has SOC typelynamics However, we can explore the
existence of correlations of events olamng time scales
to indicate whethethe system has non-triviadomplex
dynamics with non-Gaussian properties. We also
consider the probability distribution function of
disturbance sizes.

2. Detecting long time correlations in
time series

A time series is said thave long-rangelependence if
its autocorrelation function falls off asymptotically as a
power law. This type ofdependence idifficult to
determine becaugbe noisetends to dominate over the
signal forlong time lags. Overthe lastdecadeseveral
techniqgues have beemleveloped to overcome this
problem. One suchechnique,and chronologically the
first one, is therescaledrangestatistics R/S statistics)
proposed by Mandelbr@nd Wallis [3] and based on a
previous hydrologicahnalysis by Hurst [4]; another is
the scaled window variance technique [2].

The R/S statistics or thescaled window variance
technique considers blocksmfsuccessivgoints in the
integrated time seriesnd neasurehow fast therange or
standarddeviation ofthe blocks grows am increases.
In the case ofthe scaledwindow variance technique, we
begin by  considering a time series

We then construct the



associated series of the Brownian motion,
YE{Yt:tZl,Z,..., n}; that is, the originalseries

t
integrated intime: Y, = Z X,. For the Brownian
0

motion seriesY andfor eachm = 1, 2, ...,N, a new
series Y™ = {Yu(m):u =12,... n/m} is generated.
The elements of this seriese blocks of M elements of
the initial series; thais, Y™ ={NVomemers IV}

We thencalculatethe standarddeviation, O S]),

each of tha/m blocks ofm elements of this series, and
after we averagear(]'q) over then/m blocks to obtain

o, =(mn)3ir o).

It can beshown that in thease of atime seriesX
with an autocorrelation functiothat has analgebraic
tail, the functiono,, scales asg,,, U m", whereH is

the Hurst exponent. Fdr > H > 0.5, therearelong-

range time correlationgndfor 0.5 >H > 0, theseries
has long-range anticorrelations. Hf= 1.0, theprocess
is deterministic. Wherthe data is uncorrelated, the
Hurst exponent is 0.5.

A constanH parameter over a longnge oftime lag
values is consistent with self-similarity of the signal in
this range [5]andwith an autocorrelation function that
decays as goower of the time lag with exponent
B=2 — H. In comparison with thelirect determination
of the autocorrelation function or othé&echniques of
calculating the value oH, the scaledwindow variance
analysis is robust.

within

3. Analysis of blackout data

We define blackouts asdisturbances othe power
transmission system thatause loss of power to
customers. Every year, the Norimerican Electrical
Reliability Council (NERC) publishes documentedist
summarizing major disturbances [6]. They araligérse
magnitudeand the causesvary. It is notclear how
complete thisdatais, but it is the best-documented
sourcethat wehave foundfor disturbances irthe North
American power transmission system.

Table 1. Causes of major blackouts by region 1994-97.

Cause W NE MW SE Total
Weather — 25% 6 3 13 4 26
Equipment fails — 47% 26 15 6 3 50
Human error — 12% 4 5 4 0 13
Vandalism — 9% 4 4 3 0 11
Low reserves — 7% 0 5 1 0 6

We reviewed NERC records for the years 1994
through 1997 inclusive to determine the causesdoent
major blackouts thaivere centered oithe transmission
system. The breakdown of 106 major blackouts for 1994
through 1997 is shown in Table 1. Taeerage time to
restore power was approximatelyh®urs. Thenumber
of major blackouts eachearrangedfrom 21 to 29 with
an average of 27.

In trying to understand the global dynamical
properties of the North Aatican powertransmission
grid, we havedone asimple correlation analysis of the
reported blackouts between Janua®®3 and July 1998.
We constructedime series with the resolution of a day
for the number ofdisturbancesand for four different
measures ofhe blackout size. The blackout size was
measured by the energyserved (MWM), the amount of
power lost (MW), number of customeaffected and the
restorationtime. (Energy unservedvas calculated from
the NERC data by multiplying the power lost by the
restoration time.) For example, the time series for
power lost is shown in Figure dndthe time series for
energy unserved ishown in Figure 2. Blackoutwith
incomplete data (power lost or restoration timissimg)
were not included in any of the time series.

To these five series, the number of blackouts plus the
four measures of blackowdize, we have applied the
scaled windowed variance analysis technignéthe R/S
statistics todeterminetheir respectiveHurst exponents
H. Both methods give consistent answeiEhere is a
clear range ofmore that onedecade oftime lags (from

about 30 days to 500 days) over which éiveragedd,
shows a clear power dependence on time. Figure 3 shows
the averagedJ,, as a function of timedelay for the
number of blackouts and the energy unserved. The Hurst
exponents obtained by fittir@,, are shown in Table 2.

Table 2. Hurst exponents of blackout numbers and sizes

Time series Hurst expondt
Number of blackouts 0.52
Enegy unserved (MWh 0.70
Power lost (MW) 0.58
Number of customers 0.69
Restoration time 0.67

For the time series of the number of blackouts, the
Hurst exponent is abo@.5. Thisvalue indicateshat
there is no correlatiobetween individuatriggers of the
blackouts. This is not surprisingnd is perhaps what
could beexpectedrom the variety ofrandom causes for
the blackouts.



On the otheihand,the analysis of the time series of
blackout sizes show a clear existencdoniy rangetime
correlations, a@ndicated bythe Hurst exponentgreater
than 0.5 in Table 2. The time record considered has only
1920 points. To test thgignificance of the results for
the blackout sizes, sandom scrambling of the time
series leads tbl exponents that range from 0.490®5.
They are well below the valuedbtained forthe original
records,which suggest that thenleviation from0.5 is
significant. Thesequences daot show any signs of
periodicity that could contaminate thaletermination of
H.

We alsousedthe NERCdatafrom Januaryl993 to
July 1998 to estimate the probability distribution
function of the blackout sizes. For example, Figure 4
shows the probability distribution of the enengyserved
in the blackouts. Thditted line shows that the
probability decreases with power —0.98. For iiienber
of customers affected, the probability distribution
function decays as 20.65 power andfor the restoration
time the power is —1.13. Faach ofthese measures of
blackout size, the probability falls off relativeslowly
with the blackout size. Since the exponearts clearly
above -2, the variance of the blackout sizenkounded.
Furthermore, since the poweare close to —1,even the
meancould be unbounded. Thesesults imply that
blackouts of the size of the full grid are possible.

4. Possible explanation of power system
self-organized criticality

We suggest a qualitativeccount ofthe structure and
effects in a large scale electric pow&ansmission
system which could give rise to SOC. The transmission
system contains many components suctgerserators,
transmission linestransformersand substations. Each
componentexperiences a certain loadireach day and
when all the componentare consideredogether they
experiencesome pattern owector of loadings. The
pattern of component loadings idetermined by the
power system operating policyand is driven by the
aggregateccustomerdemands athe substations. The
power system operating policy includes short tiinaene
actions such as generator dispatch as well as |dimger
frameactions such as improvements pnocedures and
plannedoutages for maintenance. The operating policy
seeks to satisfy the customer demands at least cost. The
customerdemandhas daily and seasonal cycleand a
secular increase. Moreovethe patterns ofcustomer
demandchangedue to the evolution of bulk power
markets and geographic shifts in population and
industry.

Events are either the limiting of a componéading
to a maximum or theeroing of the componeitading

if that component trips or fails. Eventecur with a
probability that depends on the component loading. For
example, the probability afansformer failure generally
increaseswith loading. Anotherexample is that an
operator redispatching tdimit power flow on a
transmission line to its thermal ratimguld bemodeled
as probabilityzerobelow the thermal rating of the line
and probability one above the thermal rating.

Each event is dimiting or zeroing ofload in a
componentand causes a redistribution of powiow in
the networkandhence a discrete increasethe loading
of other system components. Thus eveats cascade.

If a cascade ofventsincludeslimiting or zeroing the
load atsubstations, it is a blackout. #tressedpower
transmission systeraxperiencing an evemhust either
redistribute loadsatisfactorily or shed some load at
substations in a blackout. A cascade of events leading to
blackout usuallyoccurs on aime scale of nnutes to
hours and is completed in less than one day.

It is customary for utility engineers to make
prodigious efforts toavoid blackoutsand especially to
avoid repeatedblackouts with similar causes.These
responses to a blackootcur on a range dfme scales
longer than oneday. Responsesinclude repair of
damaged equipment, moirequentmaintenance¢changes
in operating policyaway from the specific conditions
causing the blackout, installingiew equipment to
increase system capacity, and adjustingdaingsystem
alarms or controls. The responseducethe probability
of events in componentelated tothe blackout,either
by lowering their probabilitieglirectly or by reducing
component loading by increasing componeagacity or
by transferring some of the loading to other components.
The responsesre directed towards the components
involved in causing the blackout. Thus the probability
of a similar blackoubccurring isreduced, ateastuntil
load growth degradeshe improvementsnade. There are
similar, but less intensesponses tainrealizedthreats
to system security such aar nisses and sinulated
blackouts.

The pattern or vector of component loadimgay be
thought of as a system state. Maximutomponent
loadings are driven up by customer demand tremashe
operating policy. High loadingscreasethe chances of
cascading events and blackouts. The loadings of
components involved in the blackoatre reduced or
relaxed by the responses to security threats and
blackouts. However,the loadings of some components
not involved in the blackout mayincrease. These
opposingforces drivingthe component loadings up and
relaxing the component loadingse areflection of the
standard tradeofbetweensatisfying customedemands
economicallyand security. The opposindorces apply
over a range ofime scales. We suggest that the



opposing forces, togethemwith underlying growth in
customerdemand andliversity give rise to adynamic
equilibrium and conjecture thitis dynamic equilibrium
is SOC.

We briefly indicate the roughly analogoustructure
and effects in anidealized sandpile model that is
expected tashow SOC [7]. Consider a largeidealized
sand pile that has grains séndadded at aontinuously
varying location. When the local maximum gradient gets
too large, sand at that location is more likely to topple.
Events are the toppling efandand cascadingvents are
avalanches. Theystem state is &ector of maximum
gradients atall the locations in thesandpile. The
driving force is the addition of sandwhich tends to
increase the maximum gradient, and the relakince is
gravity, which topples thesand and reduces the
maximum gradient. SOC is adynamic equilibrium in
which avalanches oéll sizesoccur and in which there
are long time correlations between avalanches. The
analogy betweethe sandpile andthe power system is
shown in Table 3. There arealso some distinctions
betweenthe two systems. In thesand pile, the
avalanches areoincident with the relaxation ofhigh
gradients. In the powesystem,eachblackoutoccurs on
fast time scale (less than oday), but theknowledge of
which components caused the blackdetermines which
component loadingsre relaxedboth immediatelyafter
the blackout and for some time after the blackout.

Table 3. Analogy between power system and sand pile

Sand pile
gradientprofile
addition of sand
gravity
sand topples

| Power system
loading pattern
customer demand
reponse to blackout
limit flow or trip

system state
driving force
relaxing force
event

5. Conclusion

The time series of blackout sizgsesented above
show long-rangetime correlations as well apower
dependentails in their distribution functions. These
initial results suggest that the globdynamics of the
power transmission systenare those of a complex
dynamical system. Such system may be close to a SOC
system. The resultare consistent with SOC, buhere
is not yet enough evidence to fully confitims. Longer
and more detailed records biackoutswould behelpful,
as well as moreefined methods to distinguish SOC
dynamics from data.

The correlation resultsuggest thatlarge blackouts
are correlatedvith further largeblackoutsafter along
time interval. Ingeneral, the SWVand R/Sanalyses

presented here go beyordmulative statistics such as
the probability density function teevealsometemporal
information about the system dynamics.

We havealso suggested a qualitative description of
the global dynamics of a large scale electrower
system. These global dynamiase broadlyanalogous to
the dynamics of anidealized sandpile model that is
expected toshow SOC. This outline of a possible
explanation of SOC in gower system shows the
opposing forces that could give rise to adynamic
equilibrium with SOC properties. The opposifagces
are, roughly speaking, thdrends in load demands
weakening parts othe systemand the responses to
blackouts strengthening parts of the system. It is
interesting toreflect that responses to a blackout are
usually regarded as antcomeof a detailednvestigation
of particular blackout causes. Howeviitre more global
view suggested hersees responses to blackouts as an
intrinsic partof the global system dynamics.

If electric powertransmission systemare found to
obey SOC likedynamics,this would have a number of
important implications. First angerhapsmost striking
is the intrinsic unavoidability oftascadingevents in
such a system whedriven nearits operationallimits.
When an event occurs the natural tendency is to focus on
the cause ofthat eventand try to prevent it from
happening again. While often justified, thiserlooks
the fact thatherewill always be unforeseesvents that
will act as triggers. Reaction to a trigger which has
already occurreavill not impactanother type otrigger
and the potential severity of a resulting disruption
dependdess on thendividual trigger (orsequence of
events) then itdoes onthe overall system stat&his
means that the global system state is at least as
important in assessing a system’s vulnerability to
disruption as the state of some individual components.

On a more reassurimpte, because ofhe apparently
universal nature o80C systems, wean learn agreat
deal about their dynamics from studying simple
paradigmatic SOC models. Indeed, our qualitative
description of SOC dynamics is dirst steptowards a
more quantitativesimulation model that captures the
essentials of the global compleynamics ofthe power
system. The SOC or other complgynamics insuch a
model would providensights into globapowersystem
dynamics and allow more critical examination of
explanations of SOC. Such a model could also serve as a
testbedfor developing methods for predictirapd even
controlling the overall system state to reduce dhances
of large blackouts. Onecan even speculatabout the
possibility of determining statistical precursors to
blackouts, whichcould allow real time corrections to
prevent large blackouts.



Power transmission systen@e large, complicated
interconnectedstructures whichunderpin our society.
Our initial resultsare suggestive of SOC in the global
dynamicsgoverning blackoutand welook forward to
probing these complex dynamics further.
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Figure 1. Blackout power loss time series.
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Figure 2. Blackout energy unserved time series.
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Figure 3. Scaled windowed variance analysis of the number of blackouts
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Figure 4. Probability distribution function of energy unserved
for North American blackouts 1993-1998.



