
Chaos ARTICLE scitation.org/journal/cha

Critical behavior of power transmission network
complex dynamics in the OPA model

Cite as: Chaos 29, 033103 (2019); doi: 10.1063/1.5066370

Submitted: 15 October 2018 · Accepted: 7 February 2019 ·

Published Online: 1 March 2019 View Online Export Citation CrossMark

Benjamin A. Carreras,1,2 José M. Reynolds-Barredo,1 Ian Dobson,3 and David E. Newman2

AFFILIATIONS

1Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain
2Physics Department, University of Alaska, Fairbanks, Alaska 99775, USA
3Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, USA

ABSTRACT

Many complex infrastructure systems, such as electric power transmission grids, display characteristics of a critical or near
critical behavior with a risk of large cascading failures. Understanding this risk and its relation to the system state as it evolves
could allow for a more realistic risk assessment and even for mitigation measures. We use the OPA model of cascading blackouts
and grid evolution to describe and quantify regimes of criticality of the power grid.
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Complex systems can operate in critical or near critical
conditions. While this regime may be efficient because less
resources are required, it is also risky, because widespread
cascading failures can occasionally occur that are costly to
our society. One example is cascading blackouts in power
grid transmission networks. Here, we analyze power grids
using simplified networks with characteristics similar to
that of real systems but computationally more accessible.
We apply several measures of criticality to reveal different
regimes of the complex dynamics as the reliability of trans-
mission lines changes, including a critical regime showing
power laws in the distribution of blackout size and sub-
and super-critical regimes with lognormal distributions of
blackout size. A simple model of the lognormal behavior
away from criticality is also suggested.

I. INTRODUCTION

Complex critical infrastructure systems, such as power
transmission grids, are prone to cascading failures of all
sizes.1,2 This is a characteristic property of complex systems
operating near their critical point.3–7 In estimating the risk
of large blackouts, it is necessary to find out how close the
system is to the critical point. In this paper, we explore this
criticality issue using the ORNL-PSerc-Alaska (OPA) model.3,8,9

The OPA model of an electric power transmission system is
based on the complex dynamics of the opposing forces of

increasing power demand and the engineering responses to
failure. These complex dynamics drive the system to a self-
organized critical state (SOC).10 The OPA model has been
validated11,12 using North American power transmission data
from the Western Electricity Coordinating Council (WECC).

The system’s average proximity criticality depends on the
properties of the system, such as the reliability of the power
lines and the rate of upgrade of the system. In the OPA model,
these properties are quantified through parameters that cor-
respond to these overall properties, so that we can study the
level of criticality of the system through systematic variations
of the parameters. We explore the changes in the properties
of the dynamical evolution of the electric power grid as we
change the reliability of the lines, that is, the probability p1

that an overloaded line outages during the cascading process.
We study these changes as the system gets closer to a crit-
ical point using the 1600 node artificial network developed
in Ref. 16. (Earlier studies were carried out using a smaller
network,11 but the network was likely too small to be able to
detect clear changes when the system was getting close to a
critical point.)

We evaluate the criticality by processing the cascades
produced by the OPA model. The λ measure of average cas-
cade propagation is the standard Harris estimator14 calculated
by taking the average of the ratio of child failures (iteration
i) to parent failures (iteration i − 1) over all the cascading
events. In Ref. 13, we developed the λgaga measure to deter-
mine the criticality of the dynamic states during the electric
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grid time evolution. The λgaga measure is an averaged value of
the parameter λ measured during the cascading process of the
blackout normalized to the maximum possible length of the
cascades.

In a dynamical process, we have to distinguish between
the overall dynamical state of the system and the individual
states at each moment of the dynamical evolution. So for a
fixed set of parameters, we also explore the critical proper-
ties of individual states depending on the instantaneous level
of the demand. In reality, the averaged statistical properties
of the dynamical states result from a mixture of states at
different levels of criticality.

The rest of the paper is organized as follows. Section II
describes the OPA model. Section III uses the OPA model to
explore the criticality as a function of the reliability parame-
ter of the lines. These results give us three different regions
on this parameter and they are discussed in detail in Sec. IV.
Section V tests the fits of the various blackout probability dis-
tribution functions (PDFs) with the power law and lognormal
distributions using Clauset’s method.17 Section VI uses a sim-
ple model to interpret the critical behavior. Then, we explore
states within the same dynamical simulation with different
levels of criticality. Finally, the conclusions of the paper are
given in Sec. VIII.

II. THE OPA MODEL

The OPA model as described in Refs. 3, 8, and 9 has two
time scales: a fast time scale of cascading blackouts and a slow
time scale of grid evolution as summarized in Fig. 1. In the fast
time scale, OPA simulates a process of cascading outages with
transmission lines, loads, and generators represented with a
standard DC load flow approximation. Each cascade of outages
can be thought of as occurring once a day so that each day has
one cascade. As expected in real power grids, most of the cas-
cades consist of initial outages followed by no further outages,
but quite often the initial outages propagate into further iter-
ations of outages. An average daily peak load is chosen as the
representative of the daily loading. It is necessary to provide
some variation or noise in the input conditions to represent
the varying conditions of the power grid so that a realistic
variety of cascades can occur. This is done by making the pat-
tern of loads for each day vary up and down randomly about
the average daily peak load, and the magnitude of this load
variation is controlled by the parameter γ .

In the fast time scale, each cascade of outages is pro-
duced iteratively. The iteration starts with a solved base case,
which is then modified by independent random line outages
with probability p0. Whenever a line is outaged, the genera-
tion is redispatched and the load is shed using standard linear
programming optimization. The cost function is weighted to
ensure that load shedding is avoided wherever possible. If
any lines were overloaded during the optimization, then these
lines are outaged with a fixed probability p1. If any line outages,
then there is a further iteration of the process of redispatch
and testing for outages. The iterations proceed until there are

FIG. 1. OPA flow chart showing slow outer loop of grid evolution and fast inner
loop of iterations of outages in each cascade.

no more outages. Then, the power lost in the blackout is the
total load shed.

In the slow time scale, OPA models the complex dynam-
ics of the transmission grid evolving in response to a slowly
increasing power demand and, the increases in the system
capacity are caused by the engineering responses to black-
outs. The slow daily increase of the electricity demand is
obtained by multiplying all loads by 1.00005, corresponding
to the rate of increase of about 2% per year. If a blackout
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occurs, then the lines involved in the blackout have their line
flow limits increased slightly by multiplying by an upgrade
parameter µ. That is, the parts of the system involved in the
last blackout are upgraded. The grid topology remains fixed
in the upgrade of the lines for model simplicity. To maintain
a coordination between generation capacity and transmission
capacity, the generation maximum power increases automat-
ically when the capacity margin is below a given critical level
1P/P, which in the present case is taken to be 20%.

In this paper, we use an artificial network built according
to the prescriptions of Ref. 16. The network has 1600 nodes
and 2370 lines. This is large enough to be able to study the
criticality issues. Networks with less than 400 nodes are not
large enough for this purpose.

III. CRITICALITY METRIC λgaga

A self-organized critical system is by definition always
close to a critical point, but the properties of this critical point
may vary depending on different parameters that control the
dynamics of the system. The OPA model with realistic grid
parameters has the characteristics of a SOC system. However,
when a wider range of parameters is considered, the complex
dynamics of the cascading blackouts may change, move away
from criticality, and other patterns of reliability emerge.

In Ref. 13, we introduced a metric λgaga that is a
generalized autonomous generational average (gaga) to mea-
sure the proximity to criticality. To define λgaga, let us consider
a time interval long enough to have many cascades during
blackouts. Cascade length is the total number of iterations in
a cascading process. Assume that jM is the maximum number
of iterations in the cascades during the period of time. Then
for every k < jM, we can calculate

λk(i) =
Ok(i)

Ok(i − 1)
, (1)

where Ok(i) is the sum of the number of failures in iteration
i for all cascades with length k or greater than k. Note the
special case of λ0(i), which is the standard Harris estimator
λ.14 Then, for k > 2, we define an average value of λ over the
iterations, that is,

〈λ〉k =
1

k − 2

k−1
∑

i=2

λk(i). (2)

Then, λgaga is the averaged value over all values of the cut-
off k > 2. It can be checked that 〈λ〉k converges quickly as k
increases (see Ref. 13). This converged value can be interpreted
as the averaged ratio of overloaded lines between consecutive
iterations particularized to long cascades. To compare differ-
ent states s, we define JM to be the maximum value of jsM for
different states. Then, λgaga(s) is defined by

λgaga(s) =
1

JM − 3

jsM
∑

k=3

〈λ〉sk . (3)

Because the value of 〈λ〉k saturates rapidly with growing k,
λgaga(s) can be roughly interpreted as the product of the sat-
urated value and the cascade length. It thus weights both
the length of the cascade and the ratio of overloaded lines
between consecutive iterations for long cascades. This com-
bination in a single parameter λgaga(s) gives us a good measure
of the proximity to the critical point, where the cascades are
long and λgaga(s) should peak. In particular, λgaga(s) near one
indicates criticality.

IV. HOW CRITICALITY AND PDFS DEPEND ON p1

Let us consider the 1600 node network and study the
dynamical evolution of this network for different values of p1.
Figure 2 shows λgaga as a function of p1 for the cascades of out-
ages and overloads. Recall that in each iteration of OPA, the
lines that outage are a subset of the lines that are overloaded
and potentially outage, so that both the number of outages
and the number of overloads produce a time series indicating
the amount of cascading at each iteration. We can see that the
values of λgaga are only close to one in a small interval of val-
ues of p1. When p1 increases from zero to positive values, the
system reaches a critical point around p1 = 0.024. As p1 con-
tinues to increase, finite size effects become important and,
λgaga becomes at first stationary and then decreases. There are
three regions: the first region is approaching criticality, the
second is characterized by the competing effects of criticality
and finite size, and the third is dominated by super-criticality
and finite size effects. In this section, we analyze the prop-
erties of the three regions to see how the network complex
dynamics have evolved.

FIG. 2. λgaga as a function of p1 for outages and overloads.
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FIG. 3. PDF of line outages for four val-
ues of p1 in Region I, with fits by lognormal
(broken line) and the power law (dotted
line) distributions.

FIG. 4. Rank function of line outages for
two values of p1 close to the critical region
with power law fits.
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FIG. 5. Rank function of the normal-
ized load shed with lognormal fits for four
values of p1 in Region I.

A. Region I: Approaching criticality

Let us consider the statistical data from the dynamical
evolution of the network in Region I of Fig. 2, in which p1 is in
the range [0, 0.024] and λgaga varies from 0 to 1. We first exam-
ine how the PDF of the number of outaged lines per blackout
changes as p1 increases in Region 1 as shown in Fig. 3. For very
low values of p1, the PDF is well described by a lognormal dis-
tribution. As p1 increases, a tail emerges in the PDF which has a
power law character, and when p1 is close to the critical point,
almost the entire PDF becomes a power law. Of course, it is not
easy to distinguish in some cases between a lognormal and a
power law. This issue will be discussed in Sec. V. The situation
bears a great similarity with the problem of drop fragmenta-
tion described in Ref. 6, which uses a simple model to describe
the transition to criticality.

It is interesting to look in more detail at the two last cases
in Fig. 3 that show a power law behavior of the tail. The power
law dependence of the tail is even clearer in the rank function
shown in Fig. 4. Furthermore, the exponents of the tail of the

PDF and rank function decrease as p1 increases. Because of
that, for the case of p1 = 0.0024, it looks like finite size effects
start to modify the end of the tail.

The change of the distribution from lognormal to power
law can also be seen for the distribution of blackout size,
measured by the power shed normalized by the total power
demand. Figure 5 shows the rank function of the normalized
load shed for the same values of p1 used in Fig. 3. We observe
the transition from one type of distribution to the other across
those same values of p1.

B. Region II: Criticality

Region II is the criticality region in which p1 is in the
range [0.024, 0.05]. The PDF and rank functions for the black-
out data in region II are very similar in the form to those in the
upper part of region I (Figs. 4 and 5). However, the exponent
of the power law for the rank function goes below 2 so that
the tails of these functions become much less steep and as a
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FIG. 6. Rank function of line outages
and normalized load shed for p1 = 0.031
in Region II with power law fits.

consequence, the finite size effects are more apparent. This
can be seen in Fig. 6, where we have plotted for p1 = 0.031 the
rank function for both outages and normalized load shed.

C. Region III: Super-criticality

Region III is the region of low reliability of the lines, in
which p1 is in the range [0.05, 1]. In this region, lines outage
easily and that changes the dynamics of the system. One of
the consequences, as might be expected, is an increase of the
frequency of the blackouts. Figure 7 shows the frequency of
blackouts as a function of p1.

FIG. 7. Frequency of blackouts as a function of p1.

Another consequence of the low reliability of the lines is
that the maximum length of the cascades decreases and as a
consequence λgaga decreases as shown in Fig. 2. However, on
average, the number of iterations of cascading increases. So
the system is moving away from criticality as p1 increases.

There are also changes in the PDF of the outages as p1

increases. Figure 8 shows the PDF of outages for p1 = 0.12.
Figure 8 shows the PDF of the outages for all blackouts, for
blackouts of only one iteration, and for the blackouts with
more than one iteration. (Note that blackouts are defined as
cascades that shed load.) Separating the PDF by the number of
iterations shows two components. The PDF of the outages for
blackouts with only one iteration peaks at one outage, but the
data for this PDF are sparse and it is difficult to identify the
form of this PDF. The PDF of the outages for blackouts with
more than one iteration can be well described by a lognor-
mal distribution, with the peak moving to a larger number of
outages as p1 increases.

For the real power grid, Region III is the least interesting
region to consider. The electrical grids in developed countries
do not operate in this low reliability region. The regimes to be
considered in practice are Region II and the part of Region I
close to Region II.

V. DETERMINING CREDIBLE POWER-LAW

DISTRIBUTIONS

Section IV shows some rank functions of the blackout size
that are compatible with a lognormal distribution or with a
power-law distribution. To find which of these distributions is
most credible, we use the criteria developed by Clauset et al.17

First, the minimum value of normalized load shed is
determined by finding the minimal distance between the dis-
tribution of the power shed and its power law fit. The good-
ness of the fit test in Ref. 17 is done by generating samples of
data based on the power law fit and by calculating the distance
of these generated data from the power law fit. A measure p is
the fraction of cases in which the distance of the generated
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FIG. 8. Probability function of line outages for p1 = 0.12 in Region III.

data to the fit is larger than the distance of the real data to
the fit. A larger p indicates more confidence in the power law
nature of the data, and we use p > 0.1 as a requirement for
accepting the power law behavior. Another requirement that
we impose is that the range of values of the power law be at
least a decade. With these two requirements, we obtain the

FIG. 9. Region of reliable power law behavior: α is the exponent of the tail of the
PDF of blackout size and p the measure of goodness of the fit.

FIG. 10. R and pR versus p1.R > 0 indicates power law is more likely andR < 0
indicates lognormal is more likely.

range of p1 values with a credible power law shown in Fig. 9.
The range of values of p1 with a credible power law corre-
sponds to the transition from region I to the critical region II
in Fig. 2. As p1 increases further in region II, the reliability of
the power law fit decreases.

There is a further evaluation of the power law behav-
ior which can be done by comparing the fits of the power
law model with the lognormal model. As described in Refs. 17
and 18, the measure R can be introduced, which is the log-
arithm of the ratio of the likelihood for the two competing
models. In our case, if R is positive, the power law has max-
imum likelihood, and otherwise the lognormal has maximum
likelihood. The results as a function of p1 are plotted in Fig. 10.
We use the measure pR that is related with the standard devi-
ation of R to evaluate the significance of value of R (see Ref. 18).
A smaller pR indicates a less significant R. The criterion used
in Ref. 17 for significance is pR < 0.1. Figure 10 shows that the
lognormal is the best model in the initial part of Region I and in
Region III. In the range of p1 shown in Fig. 9, consideration of
R and pR shows that the power law is possible. Overall, we can
conclude that for p1 in the approximate range [0.018, 0.028],
the power law is a possible fit for the distributions of the
blackout measures.

VI. A SIMPLE MODEL OF THE LOGNORMAL BEHAVIOR

AWAY FROM CRITICALITY

The results presented here bear a great similarity to the
problem of drop fragmentation described in Ref. 15, where
they use a simple model to describe a transition to criticality.

Chaos 29, 033103 (2019); doi: 10.1063/1.5066370 29, 033103-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 11. The propagation function ρ as a function of the iteration number in the three regions defined in Fig. 2.

Here, in order to understand the basic characteristics of the
critical point from the perspective of the cascade, we will use
a quite similar approach.

From the perspective of analyzing the iterations of the
cascading events, there is another way to characterize the
proximity to criticality by examining the average propagation
ρ as a function of the iteration number. The average propaga-
tion ρ is the probability of continuing the cascade at iteration
k given that the cascade reached iteration k. Figure 11 shows
the average propagation ρ as a function of the iteration num-
ber for different values of p1. We can see that in Regions I and
III, ρ can be approximated as constant (note that the initial
iteration contains initialization effects and that the final iter-
ations have sparse data). On the other hand, in Region II, ρ

at first increases with iteration number and then levels off.
This is an indication that in regions I and III, the cascad-
ing process is practically randomly driven while region II is
dominated by criticality behavior in which there are strong
correlations.

We consider only Regions I and III, approximate the aver-
age propagation ρ as constant, and suppose that there is
random variation about ρ as the cascade iterates. In particular,
suppose that the propagation ρjk in iteration k of cascade j is

ρjk = ρAjk, (4)

where Ajk are independent and identically distributed random
variables of mean 1 and finite variance. The distribution of the
number of iterations Gj in cascade j is given by

P[Gj ≥ n] =

n−1
∏

k=1

ρjk = ρn−1
n−1
∏

k=1

Ajk, (5)

P[Gj = n] = (1 − ρAjn)

n−1
∏

k=1

(ρAjk). (6)

FIG. 12. Rank function of the normal-
ized power shed for states with demand
above and below the averaged demand
and two values of p1 in Region I with fits by
a lognormal (broken line) and power law
(dotted line) distributions.

Chaos 29, 033103 (2019); doi: 10.1063/1.5066370 29, 033103-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 13. Rank function of the normalized power shed for states with demand
above and below the average demand with p1 = 0.031 in Region II.

So the process being multiplicative and the central limit
theorem indicate a lognormal form of the distribution of G for
large enough n.

If w is the average number of line outages per iteration,
the expected total number of outages for n iterations is

ET =

n
∑

k=1

wP[G ≥ n] = w
(

1 + ρ + ρ2 + · · · + ρn−1
)

= w
ρn − 1

ρ − 1
,

(7)
so if ρ = 1, there is a critical point and the sum diverges.

In light of what we have described in Sec. III and in Fig. 2,
the multiplicative model is consistent with the dynamics in
Regions I and III of Fig. 1 because the propagation probability ρ

is practically constant in Regions I and III. However, the multi-
plicative model does not describe the dynamics in the critical
Region II.

VII. STATES WITHIN A SINGLE DYNAMICAL

EVOLUTION WITH DIFFERENT LEVELS OF CRITICALITY

For a fixed set of parameters, the dynamical evolution of
OPA leads to multiple states with different levels of power
demand and different potential blackout properties. Not all
these states can lead to the same type of blackout nor to the
same cascade of events. Even if the system is in Region II,
not all events have the properties of a critical event, and we
can analyze now sets of these states from the perspective of
criticality.

We can use the power demand to classify these states.
The average power demand 〈Pd(t)〉 is increasing with time
and we can normalize the difference between the daily
power demand Pd(t) and the average power demand 〈Pd(t)〉 to
obtain

1P =
Pd(t) − 〈Pd(t)〉

〈Pd(t)〉
. (8)

The value of1P allows us to classify states with power demand
more than a fraction above the mean power demand or more
than fraction below the mean power demand. When we look
at the rank function of the normalized load shed, we can see a
clear difference between the states with demands above and
below the mean. Figure 12 shows two examples of cases in
Region 1.

As mentioned before, it is not clear when a PDF or a
rank function can be fitted by a lognormal or a power law
PDF. However, if we assume a power law, it is clear that the
exponent for the rank of the states above the mean is smaller
than for those below the mean. For the case with p1 = 0.019
in Region I, the exponent for the cases below the mean is
less than 2, which is an exponent corresponding to Region II,
the critical region. So even if the overall case is subcritical, it
contains many states that are critical.

When the system is in the critical region, Region II, there
is no clear distinction between the states above the average
demand and below as can be seen in Fig. 13 for p1 = 0.031.

VIII. CONCLUSIONS

In this paper, we have discussed the level of criticality
of the solutions of the OPA model depending on the relia-
bility of the network, as measured by the parameter p1 that
describes the line reliability by controlling the overloaded line
outage probability. We have shown that for low values of p1

(high reliability lines), distributions of load shed and outages
are essentially a lognormal distribution. As the system lines
become more unreliable, p1 increases, and we reach a criti-
cal region in which the distributions show a power tail. When
the system lines become very unreliable, the system goes
supercritical and the distributions became lognormal again.

The calculations have been done for a model network.
The observed data in the power grid4 and the modeling with
OPA of WECC networks and other simulations4,5,11,19 show that
the real power networks are generally in the transition region
from subcritical to critical.
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