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Complex dynamics of blackouts in power transmission systems
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In order to study the complex global dynamics of a series of blackouts in power transmission
systems a dynamical model of such a system has been developed. This model includes a simple
representation of the dynamical evolution by incorporating the growth of power demand, the
engineering response to system failures, and the upgrade of generator capacity. Two types of
blackouts have been identified, each having different dynamical properties. One type of blackout
involves the loss of load due to transmission lines reaching their load limits but no line outages. The
second type of blackout is associated with multiple line outages. The dominance of one type of
blackout over the other depends on operational conditions and the proximity of the system to one of

its two critical points. The model displays characteristics such as a probability distribution of
blackout sizes with power tails similar to that observed in real blackout data from North America.
© 2004 American Institute of Physic§DOI: 10.1063/1.1781391

Power transmission systems are complex systems that
evolve over years in response to the economic growth of
the country and to continuously increasing power de-
mand. In spite of the reliability of these systems, there are
widespread disturbances that have significant cost to so-
ciety. The average frequency of blackouts in the United
States is about one every 13 days. This frequency has not
changed over the last 30 years. Also the probability dis-
tribution of blackout sizes has a power tail; this depen-
dence indicates that the probability of large blackouts is
relatively high. Indeed, although large blackouts are
rarer than small blackouts, it can be argued that their
higher societal cost makes the risk of large blackouts
comparable to or exceed the risk of small blackouts. The
operation of power transmission systems is studied from
the perspective of complex dynamics in which a diversity
of opposing forces regulate both the maximum capabili-
ties of the system components and the loadings at which
they operate. These forces enter in a nonlinear manner
and may cause an evolution process to be ultimately re-
sponsible for the regulation of the system. This view of a
power transmission system considers not only the engi-
neering and physical aspects of the power system, but
also the economic, regulatory, and political responses to
blackouts and increases in load power demand. From this
perspective, the search for the cause of the blackouts
must not be limited to the trigger of the blackout, which
is normally a random event, but it must also consider the
dynamical state of the power transmission system. A de-
tailed incorporation of all these aspects of the dynamics
into a single model is extremely complicated. Here, a sim-
plified model is discussed with some approximate overall
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representation of the opposing forces controlling the sys-
tem dynamics. This model reproduces some of the main
features of North American blackout data.

I. INTRODUCTION

Power transmission systems are complex systems that
evolve over years in response to the economic growth of the
country and to continuously increasing power demand. The
evolution and reliability of these systems are leading engi-
neering accomplishments of the last century that underpin
developed societies. Nevertheless, widespread disturbances
of power transmission systems that have significant cost to
society are consistently present. An analysis of blacRouts
done in the 1970s indicated that the average frequency of
blackouts in the United States was one every 14 days. More
recent analysés of 15 years of North American Electrical
Reliability Council (NERC) data on blackouts of the North
American power gritlgave an average frequency of black-
outs of one every 13 days. Furthermore, these analyses show
that the distribution of blackout sizes has a power tail with an
exponent of about- 1.3+ 0.2. These results indicate that the
probability of large blackouts is relatively high. Indeed, al-
though large blackouts are rarer than small blackouts, it can
be argued that combining their higher societal costs with
their relatively high probability makes the risk of large
blackouts comparable to or greater than the risk of small
blackouts’

It is clear that individual blackouts are triggered by ran-
dom events ranging from equipment failures and bad
weather to vandalisthThe blackouts then typically become
widespread through a series of cascading events. However, it
must be remembered that these individual blackouts occur in

© 2004 American Institute of Physics

Downloaded 03 Oct 2004 to 128.104.182.203. Redistribution subject to AIP license or copyright, see http:/chaos.aip.org/chaos/copyright.jsp


http://dx.doi.org/10.1063/1.1781391

644 Chaos, Vol. 14, No. 3, 2004 Carreras et al.

a power transmission system that is itself slowly and dyfluences between components that cause failure propagation.
namically evolving in its design, configuration, and opera-The effects of the network degree of connectivity and inter-
tion. For example, the loading of system components relativeomponent influences on the failure size and duration were
to their maximum loading is a key factor governing the studied. Similarly, Pepynet al'® used a Markov model for
propagation of component failures and this loading evolvesliscrete-state power system nodal components but had fail-
as the system components or operational policies are upwes propagate along the transmission lines of a power sys-
graded. The existence of a power tail in the distribution oftem network with a fixed probability. DeMartband Parrilo
blackouts and the long time correlations seen in the systerat all” addressed the challenging problem of determining
suggests that underlying the large-scale blackouts may be Gascading failure due to dynamic transients by using hybrid
dynamically caused proximity to a critical point. It should be nonlinear differential equation models. DeMarco used
noted that the size of a given blackout is unrelated to théyapunov methods applied to a smoothed model; Parrilo

particular triggering event that initiated that blackout. et al. used Karhunen—Loeve and Galerkin model reduction
To investigate such a possibility, we propose a model foto address the problem.
power transmission systefitsthat involves not only the dy- The rest of this paper is organized as follows: In Sec. I,

namics of the generator dispatch but also the evolution of thee introduce a dynamical model of power transmission sys-
system under a continuous increase in demand. This mod&m evolution over long time scales. Details of the power
shows how the slow opposing forces of load growth andlow model and of the fast time scale dynamics are provided
network upgrades in response to blackouts could selfin the Appendix. In Sec. Ill, numerical results of the model
organize the power system to a dynamic equilibrium. Black-are reported with an analysis of the time and space correla-
outs are modeled by overloads and outages of transmissidi®ns introduced by the dynamics. In Sec. IV, we analyze the
lines determined in the context of linear programmin)  effect of changing the ratio of generator capacity margin to
dispatch of a dc load flow model. This model shows complexnaximum load fluctuation. This ratio allows the separation
dynamical behaviors and has a variety of transition points agf the dynamics into two different regimes. The conclusions
a function of increasing power demah@&ome of these tran- are given in Sec. V.
sition points have the characteristic properties of a critical
transition. That is, when the power demand is close to
critical value, the probability distribution functiofiPDF) of . DYNAMICAL MODEL FOR POWER TRANSMISSION
the blackout size has an algebraic tail, and the system |n modeling the dynamics of power transmission sys-
changes sharply across the critical point. Because of this, thems, one must consider two intrinsic time scales. There is a
risk of a global blackout increases sharply at the critical translow time scale, of the order of days to years, over which
sition. load power demand slowly increases. Over this time scale,
The fact that, on one hand, there are critical points withthe network is upgraded in engineering responses to black-
maximum power flow through the network and, on the otherouts and in providing more generator power in response to
hand, there is a self-organization process that tries to maxdemand. As we shall see, these slow opposing forces of load-
mize efficiency and minimize risk, may lead to a powerincrease and network-upgrade self-organize the system to a
transmission model governed by self-organized criticalitydynamic equilibrium. The dynamical properties of this model
(SO0.° Such a possibility was first explored with a simple are the main topic of this paper. In power transmission sys-
cellular automaton mod®¥l that incorporates neither the cir- tems, there is also a fast time scale, of the order of minutes to
cuit equations nor the type of long-term dynamics discussetiours, over which power is dispatched through the network
above. In this paper, we study the dynamical properties of avithin which (depending on the conditions of the netwprk
power transmission model that does incorporate these two cascading overloads or outages may lead to a blackout.
components. Over the fast time scale, we solve the standard dc power
There have been some other complex system approachéiew equation for a given distribution of load demand. We
to modeling aspects of power system blackouts. In the mostse the standard LP meth8d®° with the usual constraints
closely related work, Chen and Thétp? modeled power on generating power capability and transmission line limits
system blackouts using dc load flow and LP dispatch ando solve the generator power dispatch. An example of a
represented in detail hidden failures of the protection systenpower transmission network used in these studies is the IEEE
They obtained the distribution of power system blackout sizel18 bus network shown in Fig. 1. Details of the fast dy-
by rare event sampling, and studied blackout risk assessmenamics can be found in Refs. 6 and 7 and a summary de-
and mitigation methods. Stubna and Fowleapplied a  scription is given in the Appendix.
modified “Highly Optimized Tolerance{HOT) model to fit In any network, the network nodgbuse$ are either
North American blackout data for blackout sizes measuredbads(L) (black squares in Fig.)Lor generatorgG), (gray
by both power shed and customers disconnected. Using sfuares in Fig. [l The powerP; injected at each node is
different approach, Roy, Asavathiratham, Lesieutre, angbositive for generators and negative for loads, and the maxi-
Verghese constructed randomly generated tree networks thatum power injected i®{"®. The transmission line connect-
abstractly  represent influences between idealizedng nodes andj has power flowF;; , maximum power flow
components? In that work, components can be failed or F,’]‘a" and impedanceg;; . There areN, lines andNy=Ng
operational according to a Markov model that representst N, total nodes, wher&lg is the number of generators and
both internal component failure and repair processes and irN, is the number of loads.
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lowering their probabilities directly or by reducing com-
ponent loading by increasing component capacity or by
transferring some of the loading to other components.
The responses are directed toward the components in-
volved in causing the blackout. Thus the probability of a
similar blackout occurring is reduced; at least until load
growth degrades the improvements that were made.
There are similar but less intense responses to unrealized
threats to system security, such as near misses and simu-
lated blackouts.

By simplifying all engineering responses into a single
parametef we crudely represent all these responses to a
blackout. The response is modeled as happening on the
next day, but the effect is eventually cancelled by the
FIG. 1. Diagram of the IEEE 118 bus network. Generators are gray squares;  slow load increase. Because of the disparity between
loads are the black squares. these two time scales, at this level of modeling it does
not seem crucial to have an accurate estimate of the re-

The slow dynamics proposed in Refs. 6 and 7 has three  SPOnse time, and the one-day time scale may be reason-
components(1) the growth of the demand?) response to able.
blackouts by upgrades in the grid transmission capability(2) The maximum generator power is increased in response
and (3) response to increased demand by increasing maxi- to the load demand as follows:

mum generator power. These components of the model are (5 The increase in power is quantized. This can reflect
translated into a set of simple rules. We simplify the time either the upgrade of a power plant or the addition of
scale by regarding one blackout to be possible each day at generators. The increase is taken to be a fixed ratio
the peak loading of that day. At the beginning of the day to the total .power Therefore, we introduce the quan-
we apply the following rules: tity ' '

(1) The demand for power grows. All loads are multiplied AP,=(P;/Ng) &)

by a fixed parametex that represents the daily rate of .
increase in electricity demand. On the basis of past elec- wherePy is the total power demandig the number

tricity consumption in the United States, we estimate that of generators, and is a parameter that we have
A =1.00005. This value corresponds to a yearly rate of taken to be a few percent.

1.8%, (b) To be able to increase the maximum power in node
Pi()=APi(t—1) for ielL. (1) j, the sum of the power flow limits of the lines con-
To represent the daily local fluctuations in power de- nected toj should be larger than the existing gener-
mand, all power loads are multiplied by a random num- ating power plus the addition at node This re-
berr, such that 2- y<r=<1y, with 1<y=<2. The power quirement maintains the coordination of the
transmission grid is improved. We assume a gradual im- maximum generator power ratings with the line rat-
provement in the transmission capacity of the grid in ings.

response to outages and blackouts. This improvement is

implemented through an increase Bﬁ?ax for the lines (c) A second condition to be verified before any maxi-

that have overloaded during a blackout. That is, mum generator power increase is that the mean gen-
FI(t) = uFI (- 1), ) erator power margin has reached a threshold valu-e.
if the line ij overloads during a blackout. We taketo That I.S’ we define the mean generator power margin
be a constant greater than 1 and in the present studies we at a imet as

have variedu in the range 1.0& u<1.1. AP 3 6P~ Poet ™! @

It is customary for utility engineers to make prodigious P Poel I ’

efforts to avoid blackouts, and especially to avoid re- whereP,, is the initial power load demand.

peated blackouts with similar causes, which we have
simplified into this one parametegr. In general, these
responses to blackouts occur on a range of time scales
longer than one day. Responses include repair of dam-
aged equipment, more frequent maintenance, changes in

(d) Once condition(c) is verified, we choose a node at
random to test conditiotb). If the chosen node veri-
fies condition (b), we increase its power by the
amount given by Eq(3). If condition (b) is not veri-

operating policy away from the specific conditions caus- fied, we choose another node at random and iterate.
ing the blackout, installing new equipment to increase After power has been added to a node, we use Eg.
system capacity, and adjusting or adding system alarms (4) to recalculate the mean generator power margin
or controls. The responses reduce the probability of and continue the process unfilP/P is above the
events in components related to the blackout, either by prescribed quantityXP/P).
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(3) We also assign a probabilify, for a random outage of a I'=[AP /ED]/Q- (5)
line. This value represents possible failures caused by ¢

phenomena such as accidents and weather related event§ere is a simple relation betwegrand the load fluctuation
kparametery. The parametel” is the main parameter varied

f luti £ th f bl b g i in the calculations presented here. In the U.S., the generator
or a solution of the power flow problem by using linear . ar capability margin has had a wide variation over the

programming as described in the Appendix. ears, but an estimated mean vafualls into the range of
It is also possible to introduce a time delay between th%5%_300/0

detection of a limit in the generation margin and the increase The fourth parameter is the probability of an outage

in maxim.um .generator power. This d'elay would represen[:aused by a random evemiq). This parameter can be used
ponstructlon tlme..However, the_ result is the same as increagg partially control the frequency of blackouts, although the
ing the value ofx in Eq. (3), which can also give an alter- o|ation hetween them is not linear. The fifth parameter is the
native interpretation fok. _ _ probability for an overloaded line to undergo an outagg) (

Five basic parameters control the dynamics of thisy, keep this parameter in the range<9p,<1.0.
model. One is the rate of increase in power demand, Since each calculation can be done for different specific
which we keep fixed at 1.8% per year on the basis of thé enyork configurations, in this work we will use idealized
averaged value for the U.S. grid in the last two decadés. _treelike networks, which were discussed in Ref. 8, as well as
second parameter is the improvement rate of the transmigqqre realistic networks, such as the IEEE 118 bus network
sion grid, w. This is not an easy parameter to estimate. HOW‘depicted in Fig. 1.
ever, onceu is given, there is a self-regulation process by The time evolution of a power transmission system rep-
which the system produces the number of blackouts thafesented by this model leads, after a transient, to a steady-
would stimulate the engineering response needed to megtate regime. Here “steady state” is defined with relation to
demand. This is a necessary condition for the dynamicajhe sjow dynamics of the blackouts because the power de-
equilibrium of the system. The rate of increase in powermang s constantly increasing, as shown in Fig. 2. The time
demand for the overall transmission system is essentiallgyo|ution in the model shows the transient period followed
given by Rp~(A—1)N_. The system response Br~(x  py steady-state evolution. This is illustrated in Fig. 2, where
~D)fprackou 7o)NL,  Where faqou is the frequency of e have plotted the number of blackouts per 300 days as a
blackouts and /) is a weighted average of the number of fynction of time. We can see a slight increase in the average
lines overloaded during a blackout. Dynamical equilibriumnymper of blackouts during the first 20000 days. This tran-
implies thatRp =Rg . That is, the increase in demand and thegjent period is followed by the steady state where the number
corresponding increase in power supply must be matched byf plackouts in an averaged sense is constant. The properties
improvements in the transmission grid. Because those imp the slow transient are not very different from those in the
provements are in response to real or simulated blackoutgteady state. However, for statistical analysis, we use the
this relation implies that. must be greater thaxy otherwise,  gsteady-state information to avoid contamination of the statis-
the system would be collapsing with constant blackouts. Iitics, The length of the transient depends on the rate of growth
the numerical calculations and for the value of the demangy power demand. In the following calculations, we evaluate
increase of 1.8% per year, we found thamust be>1.011in  the plackout statistics by ignoring the initial transients and
order to avoid this collapse regime. In the present calculagoing the calculations for a time period of 80000 days in a
tions, we keepu in the range 1.01-1.1. In this regime, re- steady state. Of course, the use of these long time scale
sults depend weakly op. steady-state results is driven by the need for large statistical

A third parameted” is a measure of the generation ca- sagmples and it is arguable whether the real electric power

pacity of the power system in response to fluctuations in thgyrig ever actually reaches a steady state.
power demandl” is the ratio of the reserve generator power

to the maximum daily fluctuation of the power demand. The|; HyNAMICAL EVOLUTION OF THE POWER
averaged power demand increases exponentially in time a8 ANSMISSION MODEL

Pp(t)=Poe® 1. However, the real instantaneous demand , , , ,
is Pp(t), different from the averaged power demand because Looking at the time evolution of the different parameters

of daily fluctuations. The generator power installeg(t) is that characterize the blackouts, one observes a noisy signal
also different from the averaged power demand. The diﬁer:[hat could be mistaken for random. One could assume that
enceA P(t)=Pg(t) — Py(t) is the generator capability mar- this is in fact the situation because many of the blackouts are

in used to cope with fluctuations in power demand. In Ourtriggered by random events with probabilibs. However,
9 ) P np o "~ “that is not the case. It is instead found that there are signifi-
calculations, the generator capability margin is varying in
time, but we require it to be larger than a minimum pre-. : o

) : ~~ ing dynamics of the power transmission model.
scribed valueAP.. Because the power demand is continu-

) o c . ) To investigate the time correlations in this apparently
ously increasing, it is convenient to normalize all these quan-_ . .
! noisy system we calculate the Hurst expoienf time se-

tities to Pp(t). Thus we definel” as the ratio of the jgs of blackout sizes. Here, we consider two measures of the
normalized minimal generator capability mardif®./Pp(t)  size of a blackout. One is the load shed during a blackout
to the maximum fluctuation of the load demangl normalized to the total power demand; the other is the num-
=max((Pp(t)—Pp(t))/Pp(t) )2, ber of line outages during a blackout.

After applying these three rules to the network, we loo

cant space and time correlations resulting from the underly-

Downloaded 03 Oct 2004 to 128.104.182.203. Redistribution subject to AIP license or copyright, see http:/chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 14, No. 3, 2004 Complex dynamics of blackouts 647
e e Lo g o T oan ol o ooy 1 ] T
I I T 5 T
30 - Blackouis 1.6 10 ; El) * Tree 46 nodes
m Tree 94 nodes
w2 E
> 25 4 Tree 190 nodes
S 4 0.8 o [EEE11Stws |
o 1.2 10 1
&
" 204 g )
L ~ B
e o 0.6
E ?D 1 o o
o
o) — - ._l u]
I 15 o o 3 —u . -
p o 1 COn= o o
= 2 0.4+ s Mje s B
m o | "L
5 10] ---Power Served o
E
= e —
0 ; T -4- — -4- — -4- T ,04 a aaaslaaaaleaualsasulocas
010°210°410"6 10" 810 { b)
Time (days)
FIG. 2. (Color) Time evolution of the power served and number of black- O 8 - —
outs per year from the model. B
We use theR/S method” to calculate the Hurst expo- 0 6_. |
nent. An example of the result of this analysis is shown in B H=05
Fig. 3. For times of the order of a few days and a few years, '
both series show weak persistence. They have the same J] o, © o
Hurst exponentl =0.55+0.02). This result is close to the 044 ¢ Al B |
one obtained in the analydisf NERC data on blackouts of o BT T .. ® d
]
&
L A, a t &
10F |l 5 o 5 vignl ool 02 * st N
Power she I;L-PE
10¢ |k O e
0 1 2 . | 4 5
r.
1
oy 1[:] o FIG. 4. (Color) The Hurst exponeni as a function of” for the time series
E / of normalized load sheth) and line outage&b). The exponent is calculated
; from a fit of R/S in the time range 608t<10° for 46, 94, and 190 nodes
Jj tree networks and for the IEEE 118 bus network.
0 F
10° | ¢ .
i the North American power grilin this range of time scales,
' the value of the exponent does not depend on the vallie of
-1 For longer times, each time series shows a different behavior.
10 The load shed has a nearly random character With0.5 for

Time lag

o 10t 10t 100 10t 10°

I'<1. ForI'>1, the value oH decreases and in many cases
is below 0.5. For these longer time scales, the time series of
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FIG. 3. (Colon R/S for the time series of normalized load shed and line ter withH ranging from 0.2t0 0.4, depending on the network
outages for a 46-node tree network.

structure. In Fig. 4, the value &f resulting from a fit ofR/S
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in the time range 608t=<10° is given as a function df for  to operation of the system close to the critical points. A simi-
three of the tree networks and for the IEEE 118 bus networklar result has been obtained for the IEEE 118 bus network. In
Antipersistency in the time sequence of number of line outFig. 5, we have given an arbitrary shift to the relative cumu-
ages can be expected from the model. Blackouts with a largitive frequencies for a given size network to better observe
number of line outages happen rarely, only once every fewthe three different cases.

years. When they happen, there is a great deal of repair and The relative cumulative frequency plotted in Fig. 5 has
enhancement of many transmission lines. As a consequendéifee characteristic regions. They all have an exponential tail
blackouts with a large number of line outages become lesteflecting the finite size effect of the netwotkegion Il).
probable after one of those events. Therefore, there is antRegion Il is characterized by an algebraic decay. This power-
persistency at that time scale. In the present model, load sheaw-scaling region increases with the number of nodes in the
does not have a direct impact on the repair and upgrade @fetwork, suggesting that it is a robust feature of the system.
the system. Therefore, time correlations are weak. As we willlhe power decay index is practically the same for the four
discuss in the next section, fdr>1, blackouts with large networks and is close te-0.55. The particular values of the
load sheds are associated with a large number of line ouglecay index for each tree network are given in Table I, in
ages. Therefore, in thiE range we see some level of anti- which the range of the power tail region is defined as the
persistency due to the coupling of load shed and the numbéatio of the maximum load shed to the minimum load shed
of line outages. The available data from NERC are limited todescribed by the power law. From the values obtained for the
15 years, and we therefore do not have any direct way ofour networks listed in Table I, we can see that this range
confirming this long-term behavior of the model in the realscales with the network size.

power system. The functional form of the relative cumulative fre-

The time lag during which the number of line outagesguency, or at least their power-scaling region, seems to have
changes from weak persistency to antipersistency is indepef-universal character. Therefore, we can compare the relative
dent of the network size but depends on the repair aje ~ cumulative frequency of the normalized load shed obtained
As u increases, it takes longer time lags for the change téor the Iargest network with the relative cumulative fre-
occur. |ncreasingu causes a S||ght increase k, but H quency of the blackouts obtained in the analySiS of the 15
remains less than 0.5. years of NERC dat&ln Fig. 6, we have plotted the relative

Within this model the correlations are not limited to time cumulative frequency of the NERC data together with the
correlations. The PDFs of the load shed and the number delative cumulative frequencies for the 382-node tree and
line Outages both have power-sca"ng regions |mp|y|ng SpaI.EEE 118 bus networks. We have normalized the blackout
tial correlations. The correlations responsible for these powe$ize to the largest blackout over the period of time consid-
tails are the result of the system being near a critical point.ered.- We can see that the present model, regardless of the

In Ref. 7, we studied the critical points of the power Network configuration, reproduces quite well the power-
transmission model as the total load demand was varied. THealing region from the NERC data. The size of this region is
slow dynamics described in Sec. Il were not modeled. weshorter for the cal_culations. This is because the calculations
found two types of critical points: one type was related to the2"® done for relatively small networks. The level of agree-
limiting power flows in the transmission lines; the other typeMent between the algebraic scaling regions of the relative
was related to the limit in the power generation. When thesgumulqmve frequencies is remarkable and indicates that the
types of critical points are close to each other, the probabilinfynamical model for series of blackouts has captured some
distribution of the blackout size as measured by the amourfRf the main features of the NERC data.
of load shed has a power law dependence for a range of
values of the load shed. Away from_the critical point, this IV. DYNAMICAL REGIMES
power law dependence no longer exists.

When the dynamical evolution over long time scales is  Calculations carried out with this model show the exis-
included and the value df is about 1, the system naturally tence of two different dynamical regimes. The first regime is
evolves to a situation in which these critical points are closecharacterized by the low value bf(that is, a low generator
to each other. In this situation, the PDFs of the power shedapability margin and/or large fluctuations in the power de-
will have a region of algebraic decay. In Fig. 5, we havemand. In this regime, the available power is limited and has
plotted the relative cumulative frequency calculated from thelifficulties in meeting demand. Blackouts are frequent, but
time series of the blackout data from the numerical resultsthey affect only a limited number of loads. In this regime,
The cumulative frequency has been calculated directly fronthere are very few line outages. In the opposite liritis
these data using the rank function. In Fig. 5, the load shed imrge and the blackouts are less frequent, but they tend to
normalized to the total power demand. The calculation wasnvolve multiple line outages when they happen. This latter
done for three of the tree network configurations. These disregime is interesting because there are many cascading
tributions are compared with those obtained from a load scaavents that can cause blackouts in a large part of the network.
without dynamical evolution when the load value was at theThis suggests a possible separation between regimes of few
critical point. We cannot distinguish between the two calcu-failures and regimes with cascading failures both of which
lations; the relative cumulative frequencies are practicallyare physically interesting.
the same. The overlap between the two results indicates that Let us investigate in a quantitative way the separation
the dynamical model described in Sec. Il intrinsically leadsbetween these two regimes by varying the paraméter
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FIG. 5. (Color) Relative cumulative frequency of the load shed normalized 10-4 10-3 10-2 10-1 100
to the total power demand for three different tree networks. The relative
cumulative frequencies obtained from a load scan near the critical point are I..O&d Shedj pOWGI’ demand

compared with the relative cumulative frequencies obtained from the dy- . . . .
namical model discussed in this paper. FIG. 6. (Color) Relative cumulative frequencies of the normalized load shed

for the 382-node tree, the IEEE 118 bus networks, and the North American
blackouts in 15 years of NERC data normalized to the largest blackout.

Varying I' is not necessarily a realistic way of modeling the

transmission system but it allows us to understand some fegjeases, a second peak at about 17 outages emerges and the
tures of the dynamics of the model. For several tree netpgignt of the peak increases with At the highest value,
works, we have done a sequence of calculations for differenhis second peak is comparable to the peak at low number
values of the minimal generator power marglR/P)c ata  oytages per blackout. In Fig. 9, we have plotted the ratio of
constantg. We have changed this margin from 0 to 100%. the frequency of blackouts with more than 15 outages to the
For each value of this parameter, we have carried out thgean frequency of blackouts. We can see thaiforl, this
calculations for more than 100000 days in a steady Statgstio reaches 0.007. This gives a measure of the frequency of

regime. One way of looking at the change of characteristiGynat we can consider large-scale blackdutere than 16%
properties of the blackouts with is by plotting the power

delivered and the averaged number of line outages per black-
out. For a 94-node tree network, these plots are shown in T P

Fig. 7. We can see that at low and high valueslofthe 1950 T1.6
power served is low. In the first case, because of the limited i
generator power, the system cannot deliver enough power 1.4
when there is a relatively large fluctuation in load demand. 19007

At high I', the power served is low because the number of -1.2

line outages per blackout is large.

Looking at averaged quantities is not a good way of
identifying the demarcation between single failures and cas-
cading events. To have a better sense of this demarcation, wé=
have calculated the PDF of the number of line outages per 18007
blackout. In Fig. 8, we have plotted these PDFs for different
values ofI'. The calculation was done for a 94-node tree =

18507

vered>

cll

T3
o
noyoe[q 12d <safeno aur>

network. We can see that at very Idwthere is a clear peak D? 17507
at 4 outages per blackout with very low probability for 7/ 0.4
blackouts with more than 10 outages per blackoutI'Ag- 1 [
1700 Tree 94
p =0.005 2
TABLE I. Power law exponent of the PDF of the normalized power shed. 0 :
. . 1650 T T T T""10
Number of nodes PDF decay index Range of power tall
0 1 2 3 4
46 —-0.56 4
94 ~051 8 r
190 —-0.55 13
382 —058 31 FIG. 7. (Color) Averaged power delivered and number of line outages per

blackout for the 94-node tree network as a functior of
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V. CONCLUSIONS

The simple mechanisms introduced into the power trans-
mission model and representing the economical and engi-
neering responses to increasing power demands are sufficient
to introduce a complex behavior in the power system. The
results of the complex dynamics, time correlations, and
PDFs of blackout sizes are consistent with the available data
on blackouts of the North American electrical grid.

This model suggests that the real cause of the blackouts
in the electric power system should not be identified just
with the immediate random events that trigger them; instead,
the real underlying cause is at a deeper level in the long-term
forces that drive the evolution of the power system.

An important parameter in the systein, is the ratio of
the generator margin capability to the maximum daily fluc-
tuation of the loads. This is a surrogate for the systems abil-
ity to absorb fluctuations. We do not yet have an economic
model for the time evolution of which would be the next
level of self-consistent evolution for the system. This param-
eter allows us to classify the dynamics of the model into two
regimes. At lowI’, blackouts and brownouts are frequent,
and a typical blackout is characterized by very few line out-
ages. Fol'>1, blackouts are less frequent, but large cascad-

FIG. 8. (Color) PDF of the number of outages per blackout for the 94-n0deing events involving many line outages are possible.
tree network for different values df.

The dynamical behavior of this model has important im-
plications for power system planning and operation and for

of the whole grigl. We can apply this result to the U.S. grid, the mitigation of_blackout risI_<. The present model has some
taking into account that the average frequency of blackouts i§f the characteristic properties of a SOC system, although
one every 13 days. In the lof-regime, the ratio is about ©On€ cannot unequivocally prove that is strictly the case. The
0.001; this would imply that a large scale blackout is likely SUCCESS of mitigation efforts in complex systems is strongly
every 35 years. In the high-regime, the ratio goes up to influenced by the dynamics of the_: system. One can under-
0.007; this implies a frequency of one large-scale blackout@nd the complex dynamics as including opposing forces

every 5 years.
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FIG. 9. (Color online Ratio of the frequency of blackouts with more than
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that drive the system to a “dynamic equilibrium” near criti-
cality in which disruptions of all sizes occur. Power tails are
a characteristic feature of this dynamic equilibrium. Unless
the mitigation efforts alter the self-organizing dynamical
forces driving the system, the system may be pushed toward
criticality. To alter those forces with mitigation efforts may
be quite difficult because the forces are an intrinsic part of
our society and therefore the power system. Therefore, we
expect that feasible mitigation efforts can move the system to
a new dynamic equilibrium which will remain near criticality
and preserve the power tafsThus, while the absolute fre-
quency of disruptions of all sizes may be reduced, the under-
lying forces can still cause the relative frequency of large
blackouts to small blackouts to remain the same.
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APPENDIX

This fast dynamics model does not attempt to capture the
The blackout model is based on the standard dc powdptricate details of particular blackouts, which may have a
flow equation, large variety of complicated interacting processes also in-
volving, for example, protection systems, and dynamics and
F—AP (A1) human factors_. However, the fast dynamics model does rep-
' resent cascading overloads and outages that are consistent
whereF is a vector whoséN; components are the power with some basic network and operational constraints.
flows through the linesF;;, P is a vector whoseNy—1
components are the power of each ndeég, with the excep-
tion of the reference generatd?y, andA is a constant ma- .
trix. The reference generator power is not included in the,P- N- Ewart, IEEE Spectrunds, 36 (1978. o
P to avoid sinaularity ofA as a conseauence of the B. A. Carreras, D. E. Newman, |. Dobson, and A. B. Poole, “Evidence for
vector 9 y a self-organized criticality in electric power system blackoutsS be pub-
overall power balance. lished.
The input power demands are either specified determin3J. Chen, J. S. Thorp, and M. Parashar, “Analysis of electric power distur-
istically or as an average value plus some random fluctuation bance data,” 34th Hawaii International Conference on System Sciences,
. . . ,Maui, Hawaii, January 2001.
arognd the average value. The random fluctuation is appl'edlnformation on electric systems disturbances in North America can be
to either each load or to “regional” groups of load nodes.  downloaded from the NERC website at http://www.nerc.com/dawg/
The generator power dispatch is solved using standard database.html.

LP methods. Using the input power demand, we solve the B: A Careras, V. Lynch, 1. Dobson, and D. E. Newman, "Blackout miti-
gation assessment in power transmission systems,” 36th Hawaii Interna-

power flow equat_ions, EqAl), With the condition of mini- tional Conference on System Sciences, Hawaii, January 2003. Available
mizing the following cost function: from IEEE at http://ieeexplore.ieee.org.
51. Dobson, B. A. Carreras, V. Lynch, and D. E. Newman, “An initial
_ model for complex dynamics in electric power system blackouts,” 34th
Cost= ;:G Pi(t)_WEL Pj(t)' (A2) Hawaii International Conference on System Sciences, Maui, Hawalii,
< le January 2001. Available from IEEE at http://ieeexplore.ieee.org.

7 « H
We assume that all generators run at the same cost and3. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, “Modeling

that all loads have th m riority to b rved. However blackout dynamics in power transmission networks with simple struc-
all loads have the same priorily to beé served. Howeve ' ture,” 34th Hawaii International Conference on System Sciences, Maui,

we set up a high price for load shed by settifvgat 100. This Hawaii, January 2001. Available from IEEE at http://ieeexplore.ieee.org.

minimization is done with the following constraints: ®B. A. Carreras, V. Lynch, . Dobson, and D. E. Newman, Ch:Rs985
(2002.
. 9p. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&%.381(1987.
max ’ ’ ’
(1) Generator power ﬁ Pi<P™ieG, 10M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Phys. ReBIE4877
(2) Load powerP;<0 jel, (2000.

113, Chen and J. S. Thorp, “A reliability study of transmission system pro-
tection via a hidden failure DC load flow model,” IEEE Fifth International
Conference on Power System Management and Control, 17-19 April
2002, pp. 384-389.

This linear programming problem is numerically solved *2J. Chen, J. S. Thorp, and I. Dobson, “Cascading dynamics and mitigation
by using the simplex method as implemented in Ref. 25. The assessment in power system disturbances via a hidden failure model,”

; : o preprint(to be publishegd
assumption of uniform cost and load priority can of COUrS€sy p, Stubna and J. Fowler, Int. J. Bifurcation Chaos Appl. Sci. Brg).

be relaxed, but changes to the underlying dynamics are noty37 (2003.

likely from this. 143, Roy, C. Asavathiratham, B. C. Lesieutre, and G. C. Verghese, “Net-
In soIving the power dispatch problem for low-load Work models: Growth, dynamics, and failure,” in Proceedings of the 34th

L . . Al I H i | ional fi i - -

power demands, the initial conditions are chosen in such a arr;mzjgm axa';znéfr?;'ona Conference on System Sciences, 3-6 Janu

way that a feasible solution of the linear programming prob-sp”| . pepyne, C. G. Panayiotou, C. G. Cassandras, and Y.-C. Ho, “Vul-

lem exists. That is, the initial conditions yield a solution nerability assessment and allocation of protection resources in power sys-

without line overloads and without power shed. Increases in tems.” in Proceedings of the American Control Conference, Vol. 6, 25-27

. June 2001, pp. 4705-4710.
the average 'Qad powers_ and random Io_ad ﬂl_JCtu_atlonS Calc | . DeMarco, “A phase transition model for cascading network failure,”
cause a solution of the linear programming with line over- |EEg cControl Syst. Mag21, 40-51(2001).

loads or requiring load power to be shed. At this point, al’P. A. Parrilo, S. Lall, F. Paganini, G. C. Verghese, B. C. Lesieutre, and J.
cascading event may be triggered E. Marsden, “Model reduction for analysis of cascading failures in power

A di load if i systems,” in Proceedings of the 1999 American Control Conference, \ol.
cascading overload may start if one or more lines are ¢ »_4 jyne 1999, pp. 4208—4212.

overloaded in the solution of the linear programming prob-8g. Stott and E. Hobson, IEEE Trans. Power Appar. SP&S-97, 1713
lem. We consider a line to be overloaded if the power flow (1978.
through it is within 1% OfFiTaX. At this point, we assume B. Stott and E. Hobson, IEEE Trans. Power Appar. Sp#tS-97 1721

that there. is a probability; that an Overlloaded "r_]e Will 208 “stott and J. L. Marinho, IEEE Trans. Power Appar. SP#S-97, 837
cause a line outage. If an overloaded line experiences an(1979.

(3) Power flows|F;j|<
(4) Power balanc&; ., P;=0.

max
Fij
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2The IEEE 118 bus network model is a standard test system; see http:#fH. E. Hurst, Trans. Am. Soc. Civ. Eng16, 770(1951).

www.ee.washington.edu/research/pstcal. 24, B. Mandelbrot and J. R. Wallis, Water Resour. R&s909 (1969.
22gtatistical Yearbook of the electric utility industry/1998, published by Edi- 2°W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. VetterliNg;
son Electric Institut€1998. merical Recipes in CCambridge University Press, Cambridge, 1988
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