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ABSTRACT
We focus on blackouts in electric distribution systems that have a large cost to customers. To quantify resilience to these events,
we show how to calculate riskmetrics from the historical outage data routinely collected by utilities’ outagemanagement systems.
Risk is defined using a customer cost exceedance curve. The exceedance curve has a heavy tail that implies large fluctuations in
large blackout costs, and this makes estimating the mean large cost in the usual way impractical. To avoid this problem, we use
new resilience metrics describing the large event risk; these metrics are the probability of a large cost event, the annual log cost
resilience index, and the average of the logarithm of the cost of large-cost events or the slope magnitude of the tail on a log–log
exceedance curve. Resilience can be improved by planned investments to upgrade system components or speed up restoration.
The benefits that these investments would have had if they had been made in the past can be quantified by “rerunning history”
with the effects of the investment included, and then recalculating the large event risk to find the improvement in resilience. An
example using utility data shows a 2% reduction in the probability of a large cost event due to 10% wind hardening and 6%–7%
reduction due to 10% faster restoration in two different areas of a distribution utility. This new data-driven approach to quantify
resilience and resilience investments is realistic and much easier to apply than complicated approaches based on modeling all
the phases of resilience. Moreover, an appeal to improvements to past lived experience may well be persuasive to customers and
regulators in making the case for resilience investments.

1 Introduction

Overhead distribution systems are vulnerable to extremeweather
such as extreme wind. For example, the August 2020 upper
Midwest USA derecho caused ∼11 billion dollars of damage
and left more than one million customers without power. The
frequency and intensity of such extreme weather events are grad-
ually increasing [1, 2]. Thismotivates quantifying the resilience of
distribution systems by calculating the risk of large-cost events, as
well as quantifying the benefits of planned investments to reduce
these risks, and finding ways to help justify these investments to
customers and regulators.

Almost all of the literature quantifying distribution system
resilience either optimizes expected (mean) losses [3, 4] or
addresses the resilience for specific extreme events [5–9], or uses
reliability indices such as SAIDI that address system reliability
averaged over the year [2, 5, 10]. Expected or average losses are
dominated by more routine outages and do not directly measure
extreme event risk. The field is starting to move beyond specific
resilience events and average metrics. For example, Carrington
[11] extracts resilience events of all sizes from observed data and
obtains the overall statistics of resilience metrics from the outage
and restore processes. Moreover, papers led by Dubey [3, 12] have
pioneered simulation models that assess value at risk (VaR) and
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conditional value at risk (CVaR) resilience metrics that directly
quantify the risk of large events. While resilience quantification
in distribution systems typically uses detailed models of a subset
of resilience processes to simulate and assess resilience [2],
excellent opportunities are opening up to assess distribution
system resilience directly from observed utility data. Ahmad [13]
uses utility data not only to quantify resilience with metrics but
to “rerun history” with the effects of investments in resilience
included to quantify the benefits of those investments. However,
Ahmad [13] uses metrics for resilience events such as number of
outages, duration, and customer hours not served, and does not
use a metric directly describing risk.

In this paper, we aim to:

1. Formulate new metrics that use utility data to quantify
distribution system resilience in terms of the customer risk of
large-cost events, despite the problems of large fluctuations
in blackout costs caused by heavy-tailed statistics, and

2. Extend the historical rerun method to quantify the effects of
resilience investments on the large event risk. The resilience
investments considered are hardening the distribution infras-
tructure towithstandhigherwinds, and faster restoration.We
compare the effects of these investments on the risk metrics.

This paper extends and expands the methods and metrics of the
conference paper [14] and also applies new ALEC and ALCRI
metrics [15].

The historical rerun method quantifies the resilience improve-
ment that a proposed resilience investment would have had if
that investment had been made in the past [13]. Since it is driven
by real data, this has the advantage of incorporating all the
factors affecting system’s resilience over the past period, such as
weather, trees, human factors, operating procedures, equipment
aging, system reconfigurations, and restoration practices. Thus,
the historical rerun method has no modeling error from these
factors. The historical rerun method does not predict the future,
but the model-based methods of predicting the future with
simulation must represent the considerable complexities of all
the phases of resilience and are very complicated, whereas data
drives the historical rerun method and it is much simpler and
straightforward. Moreover, in communicating the benefits of a
proposed resilience investment to stakeholders, the historical
rerunmethod has some advantages. The benefits that would have
applied to the lived experience of stakeholders in the past, both
for particular large events and in general, may well be more
persuasive than the benefits that are modeled and simulated for
predicted events at some indeterminate time in the future.

2 Literature Review

Reliability indices [16] such as SAIDI, SAIFI, CAIDI, etc. remain
the most common and most reported performance measures by
most utilities and regulators. These reliability metrics measure
the frequency and customer impacts averaged over the year of
regularly occurring outages. These reliability indices are some-
times extended to include extreme outage events together with
the regularly occurring events [2, 5, 10, 17–20]. However, the

reliability metrics often entirely exclude extreme events (major
event days) from the calculations so that the large variability in
the extreme events does not make the reliability metrics vary
erratically from year to year [21] [16, Section 6.3]. Even if extreme
events are included in the calculation, these reliability metrics
do not directly characterize extreme event risk. This is because
reliability indices focus on normal operating conditions and they
value each lost kilowatt hour equally across time, when in fact
the value of lost load can compound the longer it is lost [21].
With the increase in extremeweather events [1], the risk of power
outages due to extreme weather events merits special treatment.
Some investments to improve reliability using reliability metrics
may also improve resilience, but this is not quantifiable unless
resilience metrics are also used.

The traditional risk assessment techniques in distribution sys-
tems quantify system reliability. They calculate the steady state
of Markov chain models and also use analytic methods such as
when the components of a radial distribution feeder are modeled
as a series network [17, 18]. Steady state probabilities averaged
over the year are computed, primarily for the regularly occurring
power outages, although a few classes of weather severity can also
be considered [10].

In the wider context of risk analysis, Kaplan and Garrick [22]
define risk as a combination of the probability of occurrence
and the severity of consequences. Yet, most studies quantifying
extreme events risk in power distribution systems emphasize only
one of these components. For example: Xi Chen [23] calculates
area failure probability (but not cost) to express power outage risk
to residential customers in active distribution systems. Po-chen
Chen [24] calculates the hazard and vulnerability of distribution
systems, where hazard represents the probability of a weather
event of a particular intensity and vulnerability is the probability
of outage under the occurring weather conditions. Du [25] uses
weather-related failure counts to express weather-related risk in
distribution systems and trains a Bayesian neural network to
predict different risk levels corresponding to predicted weather-
related failures caused bywind, rain, and lightning. Guikema [26]
suggests Bayesian data-based priors that can be used for failure
probability estimation in power distribution systems.

There are other works that focus on the risk of extreme events,
but they usually only consider a limited number of samples of one
type of extreme event [27]. Han [7] develops models that predict
damage, power out, and customers out to estimate the risk for
hurricanes in distribution systems before they make landfall. Xu
[8] proposes hazard resistance-based spatiotemporal risk analysis
to predict the number of customers out on a distribution system
feeder during a hurricane event and use this as a risk measure.
Guikema [9] improves hurricane risk management by predicting
the number of utility poles that will be damaged before the
arrival of a hurricane. Reed [5] analyzes the occurrence of power
outages during extreme winds and Liu [6] analyzes the same
during ice storms and hurricanes. Watson [28] uses EAGLE-I
outage data along with weather data, environmental data, and
US census data to train a gradient boosted tree model to predict
the impacts of tropical storms. These studies provide valuable
insights into system vulnerabilities under particular conditions,
but don’t allow for a comprehensive risk analysis or an analysis
easily generalizable to other event types or geographic contexts.
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In contrast, our approach analyzes observed events of all sizes to
enable a more comprehensive risk analysis.

Works that predict outages in distribution systems during mul-
tiple types of extreme events [27, 29, 30] can be used for risk
analysis if they are supplemented with an impact assessment of
the predicted outages.

Apart from quantifying the historical risk of the distribution sys-
tem, real-time/online risk assessment and short-term prediction
of risk are also addressed in some works. For example, Leite [31,
32] uses historical outage management system data and weather
data to model the failure probability and estimate interruption
cost with a time series. These two factors are then used to develop
a risk matrix to predict hourly risk levels for each distribution
feeder section. Lin and co-authors [33] propose a data-driven
online risk assessment method for distribution systems. They
estimate risk in real-time using 25 different indices from five
different categories: load, grid, resilient resources, emergency
response and repair resources, and meteorology. Such predictive
approaches can usefully guide operational decisions but are not
designed for planning and evaluating investments.

A much smaller subset of literature combines probability and
consequence estimation to give a risk analysis. In particular,
Dubey and co-authors [3, 12] have pioneered value at risk (VaR)
and conditional value at risk1 (CVaR) to give a risk analysis
for power distribution systems resilience. Related works that
discuss the use of VaR and CVaR for risk analysis in power
systems include references [34, 35]. VaR and CVaR are important
measures used in financial risk management to assess potential
losses in an investment. VaR estimates the maximum potential
loss that can be incurred with a given probability over a specified
period. In other words, it identifies a loss threshold exceeded
with a fixed probability (e.g., the 95th percentile cost). Whereas,
CVaR estimates the mean cost conditional on exceeding the VaR
threshold. These measures, long established in finance and other
infrastructure risk domains, are attractive because they explicitly
capture tail risk rather than average performance. However, the
application of CVaR to power outage cost data faces statistical
challenges when the cost distribution is sufficiently heavy-tailed,
because estimates of CVaR do not converge for the practically
available amount of data [15]. As we discuss later, this prevents
the use of CVaR in cases when the tail index is less than or equal
to 2 and motivates our new metrics that do converge in practice.

The problem of high variability in distribution system blackouts
associated with heavy-tailed probability distributions in observed
outage statistics is well known. Calculations of SAIDI often
exclude the highly variable major event days to get consistent
year-to-year estimates of reliability [16, Section 6.3]. Median
instead of mean can be used to get better estimates of a typical
value under normal conditions when the data includes extreme
values [36]. Logarithms are often used to handle high variability
in the data. For example, Sullivan [37] discusses several forms of
logarithmic transformation of outage data to improve regression
models. Pandey [38] introduces the Area Index of Resilience
AIR metric that averages the logarithm of event customer
hours to reduce its variability. Carreras [39] discusses the corre-
sponding heavy tail problem for blackout sizes in transmission
systems.

In summary, the existing literature related to risk in distribution
systems can be grouped into four broad streams:

1. Reliability-driven methods and indices (SAIDI, SAIFI, etc.)
that describe the steady-state risk averaged over the year,
capturing common outages but excluding or diluting the
effect of extreme events.

2. Event-specific resilience studies that analyze or predict the
impacts of particular hazard types, providing depth but
limited generalizability.

3. Methods that partially address risk by calculating one of the
components of risk (probability or consequence) rather than
a complete risk calculation.

4. Risk-based approaches that combine probability and conse-
quence, including VaR/CVaR methods, but face statistical
limitations under heavy-tailed cost distributions.

Our work advances the risk analysis of extreme events in
distribution systems by:

1. Simultaneously incorporating both the probability and con-
sequence components of risk of large cost events in distribu-
tion systems.

2. Using actual observed outage data for events of all types and
magnitudes, avoiding dependence on specific single-hazard
scenarios.

3. Addressing the deficiencies of mean-based metrics in heavy-
tailed settings by introducing risk metrics that can be
practically calculated.

4. Use the new risk metrics to quantify the benefits of resilience
investments from a risk-to-customer perspective.

This positions our contribution as a data-driven and statistically
robust alternative to existing risk and resilience quantification
methods, capable of both describing the risk of large cost events
and evaluating the benefits of potential resilience investments.

3 Outage Data and Extracting Events

We use 6 years of detailed outage data recorded by a US distri-
bution utility. The dataset contains records of 32,278 individual
power outages that occurred in the utility’s network. Each outage
entry corresponds to an outage of a component in the distribution
system and includes the number of customers affected during the
outage, the outage’s start and end times, and its cause codes. We
exclude the scheduled and planned outages and only consider the
unscheduled outages in this analysis.

To analyze the wind resilience investments, we use NOAA
weather data from weather stations available within the dis-
tribution network’s geographic area. For each outage, we use
the weather data from the closest available weather station.
The overall distribution network is thus divided into multiple
small areas based on the number of weather stations [13]. For
this paper, we use two of the largest areas in the distribution
network: area A and area B, which, respectively, contain 12,715
and 7876 unscheduled distribution system outages of at least
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FIGURE 1 Geographic locations of outages and the associated
weather stations in two areas of a distribution system.

1-min duration. The areas and their corresponding outages are
shown in Figure 1. The discussion and results in the subsequent
sections are based on area A. All the results of area B are given
separately in Section 8.

We group the outages into resilience events during data pre-
processing. Resilience events are formed by overlapping outages.
The start of an event is defined by an initial outage that occurs
when all components in the distribution system are operational,
and the end of the same event is defined by the first subsequent
time when all the components are restored. Two example events
are shown in Figure 2. More details about resilience events and
their automatic extraction from the outage data are available in
[13]. 3706 resilience events are formed from the outages in area A.

4 Estimating Customer Cost

The normalized customer cost of a power outage event in a utility
that serves 𝑛customer customers can be described in terms of the
total customer hours lost in that event as:

𝐶 =
𝑘 𝐴𝑒𝑣𝑒𝑛𝑡

𝑛customer

where 𝐴𝑒𝑣𝑒𝑛𝑡 is the total customer hours lost in that event, which
is equal to the area under the customer performance curve [40],
and 𝑘 is the average cost per customer per hour of an outage.

The value of 𝑘 can be estimated in various ways [41] such as
customer surveys or online tools like DOE’s ICE calculator [42]
and NREL’s CDF calculator [43]. We use 𝑘 = $370.2 (2022 USD),
based on the average proportions of customer classes (residential,
commercial, industrial) in the utility and expert feedback from
another utility. The normalization by the number of customers
served by the utility 𝑛customer spreads the blackout cost to the
affected customers equally over all the customers served by the
utility to give a blackout cost per served customer. This allows
comparison of costs when the number of customers served by the
utility changes.

The cost of a power outage to customers depends on different
factors. These include the number of customers affected by the
outage, outage duration, customer class, the affected customer’s
power outage risk level (houses with ill residents are at elevated
risk), the criticality of services offered by the affected customer
(hospitals, old homes, police, etc.), alongwith various other direct
and indirect socio-economic factors [37, 44–51]. Incorporating all
of these factors would give a more accurate yet complex model
for the cost to customers. Different values of 𝑘 can be used
for different customer classes and multiplied with each outage
individually as per its affected customer class to get a more
accurate estimate of the customer cost.

Whilewe address here a resilience event’s cost to customers, there
are costs to the utility as well, which could be similarly modeled
and analyzed to quantify the risk to the utility.

5 Estimating Large-Cost Events Risk

One basic definition of risk associates probabilities with costs
of events or groups of events [22], and can be described by the
probability distribution of the cost. One useful way to present
the probability distribution of cost is the cost exceedance curve
𝐹̄𝐶(𝑐) = P[𝐶 > 𝑐], which is the probability of the event customer
cost 𝐶 exceeding the value 𝑐 as 𝑐 varies 2.

Figure 3 shows the customer cost exceedance curve obtained from
the utility data.

5.1 Probability of a Large Cost Event

To help describe and communicate the risk of large-cost events
in Figure 3, we define large cost events as those events with cost
𝑐 ≥ 𝑐large, where 𝑐large is the threshold for the minimum large
normalized cost. Suppose that 𝑛large is the number of events
with 𝑐 ≥ 𝑐large and 𝑛event is the total number of events. Then the
probability of an event having large cost is the probability of an
event cost exceeding 𝑐large:

𝑝large = P[𝐶 ≥ 𝑐large] =
𝑛large

𝑛event
(1)

For our data we choose 𝑐large = 0.59 USD per customer served,
which corresponds to the 90th percentile of the observed nor-
malized customer costs. Therefore 𝑝large = 0.10. 𝑐large is shown
as the vertical dotted black line in Figure 3. Note that the event
cost 𝑐large = 0.59 USD is normalized per customer served and
corresponds to an event cost of 1.8 × 105 USD.

The probability 𝑝large that an event has large cost does not account
for the frequency of events. Therefore it is also useful to define the
annual frequency of large-cost events 𝑓large by multiplying 𝑝large
by the average annual event rate 𝐸rate:

𝑓large = 𝑝large 𝐸rate

For our utility data, 𝐸rate = 623 events per year, so that 𝑓large =
62.3 events per year.

4 of 13 IET Generation, Transmission & Distribution, 2025
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FIGURE 2 Event with one outage and an event with 3 outages. Each outage’s start time (open circle) and restore time (dot) are shown above the
time axis. Below the time axis is the performance curve 𝑃(𝑡) for each event. The event ends when 𝑃(𝑡) returns to zero. Licensed under CC by 4.0 from
[13].

FIGURE 3 Customer cost exceedance curve, fitted tail distribution,
and large-cost threshold 𝑐large on a log–log scale (Area A).

The probability 𝑝large that an event has a large cost can be
compared to VaR [12]. For 𝑝large, one fixes the threshold cost 𝑐large,
and then 𝑝large is the probability that the cost of an event exceeds
𝑐large. For VaR, one fixes a probability 𝑝 and then VaR is the
minimum cost 𝑐 such that the probability is 𝑝 that the event cost
over a fixed period of time, such as 1 year, exceeds 𝑐. So𝑝large differs
fromVaR, but they both encode information about the right hand
portion of the customer cost exceedance curve.

5.2 Slope of the Cost Exceedance Curve

The customer cost exceedance curve shown in Figure 3 exhibits
an approximate straight-line behavior in the right-hand portion of
the curve. 𝑐large is chosen within this linear region. Since Figure 3
has a log–log scale, the linear tail has an approximate power-law
behavior given by:

𝐹(𝑐) =
(

𝑐

𝑐large

)−𝛼

, 𝑐 ≥ 𝑐large (2)

To verify the straight-line behavior on the log–log plot, take the
logarithm of (2) to obtain log 𝐹(𝑐) = −𝛼 log 𝑐 + 𝛼 log 𝑐large. The
tail slope index 𝛼 is the absolute slope of the tail above 𝑐large on the
log–log plot of the exceedance curve, so that 𝛼 describes a linear
trend for the observed risk. A larger value of 𝛼 gives a steeper tail
and improved resilience.

𝛼 can be estimated using the maximum likelihood Hill estimator
[52]:

𝛼 =

[
1

𝑛large

∑
𝑐∈𝐶large

ln
𝑐

𝑐large

]−1

(3)

Using (3), we estimate 𝛼 = 0.79, where 𝛼 is the magnitude of the
slope of the customer cost exceedance curve for large costs. (It
follows that the corresponding large cost slope magnitude of the
probability density function of 𝐶 on a log–log plot is 𝛼 + 1.) 𝛼 is
calculated using the ratio of costs 𝑐∕𝑐large and therefore does not
depend on the multiplicative scaling of the costs or 𝑘 or 𝑛customers.

The 95% confidence intervals of 𝛼 are given in Table 2. A formal
goodness-of-fit test (using Clauset’s [53, Section 4.1] method)
gives p = 0.611 with 2500 samples, hence the plausibility of a
Pareto (straight-line) tail is not rejected at p = 0.1. This further
substantiates the linear approximation to the tail on the log–log
plot in Figure 3. A similar goodness-of-fit test with 𝑐large as the
cutoff gives p= 0.865with 10,000 bootstrap samples, and thus also
fails to reject the null hypothesis of Pareto fit above 𝑐large at p= 0.1.

5.3 Average Log Event Cost ALEC

Wedefine the average log event cost or ALECmetric for large cost
events as [15].

ALEC = 1

𝑛large

∑
𝑐∈𝐶large

log
10
𝑐 (4)

The use of the logarithm to base ten shows that ALEC indicates
the mean of the order of magnitude of the large event costs. For
example,ALEC = 1 indicates costs of mean order of magnitude 1,
or 10. Note that ALEC is also equal to log

10
of the geometric mean

of the large event costs. That is, 10ALEC is the geometric mean of
the large event costs.

Using (3) and (4), ALEC can be directly related to 𝛼:

𝛼 = (ln10)−1

ALEC − log
10
𝑐large

(5)

ALEC = 1

𝛼 ln10
+ log

10
𝑐large (6)

IET Generation, Transmission & Distribution, 2025 5 of 13
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ALEC and the frequency of large cost events 𝑓large can be
combined together to get another useful metric, the ALCRI
Annual Log Cost Resilience Index for large cost events [15]:

ALCRI = 1

𝑛year

∑
𝑐∈𝐶large

log
10
𝑐 = 𝑓large ALEC (7)

The part of the customer cost exceedance curve to the right of 𝑐large
defines the large-cost event risk and is approximately linear on
the log–log plot. This linear region can be described by 𝑝large, the
value of the exceedance curve at 𝑝large, and its slope magnitude
𝛼. Since ALEC is directly related to 𝛼 via (3) and (4), 𝑝large and
ALEC also describe the large-cost event risk. Changes in 𝑝large
andALECaffect the risk of large-cost events differently: Reducing
𝑝large moves the exceedance curve vertically downwards, whereas
reducing ALEC increases the slopemagnitude 𝛼 to greatly reduce
the risk of the very largest cost events and slightly reduce the
risk of the events with cost just above 𝑐large. ALCRI combines
ALEC and 𝑓large (which is directly related to 𝑝large) to reflect both
the changes in probability and slope. It is particularly useful in
methods such as optimization, where a single metric reduces
complexity compared to using two metrics.

Nowwe summarize the considerations [15] in choosing the large-
cost threshold 𝑐large. 𝑐large should be chosen in the approximately
linear right hand portion of the log–log plot of the exceedance
curve. Moreover, there is a tradeoff: a smaller 𝑐large includes more
large event data, giving a less variable estimates of 𝛼 and ALEC,
whereas a larger 𝑐large better describes the trend indicated by the
very largest cost events. Choosing 𝑐large is a well-known delicate
issue in estimating 𝛼 with the Hill estimator (3) [52].

5.3.1 ALEC and ALCRI in Plain Terms

Tracking the cost of power outages shows that most outages are
small and don’t cost much, but a few are massive, such as those
caused by a major hurricane, and are very expensive. The costs of
these rare, large events can be thousands of times greater than
the more common ones. Due to this huge variation in costs,
if we try to calculate the average cost of a large blackout over
time, the result is erratic whenever one of the most extreme rare
events occurs. The average does not converge, and does not give a
meaningful value that is representative of the large event risk [15].
It is like trying to find the averagewealth in a room that includes a
billionaire; the billionaire’s wealthmakes the averagemisleading.

This is where the ALECmetric comes in. It handles thesemassive
variations and gets a more stable and practical measure of the
risk from large blackouts. Instead of averaging the costs directly,
ALEC takes the average of the logarithms of the costs. Using
a base-10 logarithm essentially looks at the number of zeros
in the cost, or its “order of magnitude.” ALEC answers the
question: “On average, how many zeros are in the cost of a large
outage?”. For example, ALEC ≈ 2 implies that each large cost
outage typically costs in the hundreds of dollars per customer
served. An unnormalized ALEC value can be obtained by adding
log

10
(𝑛customer) to ALEC. For example, if a utility serves 30,000

customers and ALEC = 0.5, then unnormalized ALEC will be ≈ 5
which implies that each large cost outage typically costs hundreds
of thousands of dollars.

5.3.1.1 ALEC versus ALCRI. While ALEC indicates the
cost of one typical large outage, ALCRI indicates the annual cost
of large outages. Think of ALEC as a “per-event” number, and
ALCRI as a “per-year” number. ALCRI accounts for both the size
and annual frequency of large cost outages. Higher ALCRImeans
higher annual burden from large cost outages, and lower ALCRI
means lower annual burden from large cost outages. ALCRI can
be compared across different years to see if the large-cost event
impact on customers is getting better or worse.

5.3.1.2 Step-by-step calculation of ALEC & ALCRI.

1. Normalize all event costs gathered over a number of years,
such as 5 years, by the number of customers served.

2. Select only the large cost events—those above a threshold
cost 𝑐large (e.g., 𝑐large could be fixed at the top 10% most
expensive events in one of the years).

3. Take the base-10 logarithm of all the large event costs.

4. Average all the log cost values in step 3 to get ALEC.

5. Sum all the log cost values in step 3 and divide by the number
of years to get ALCRI.

5.4 Heavy Tails and Implications for Metrics

For our data, and as observed for two other distribution systems
[15], the tail slope magnitude 𝛼 < 1, indicating a very heavy tail,
which is associated with very large variability in the costs of
large cost events and severe statistical problems in estimating
a mean large events cost [15]. Therefore there is no typical or
representative large event cost. Moreover, although the extreme
events are rare, their cost is so high that the extreme event risk is
greater than the regular event risk. These problems are indicated
by the fact that the Pareto distribution (2) has infinite meanwhen
𝛼 < 1. It is not realistic that (2) has no upper bound of amaximum
possible event cost. However, even if such a maximum possible
event cost is assumed (such as the cost of a 1 month blackout of
the entire distribution system) so that themean is large and finite,
it takes an impractical amount of data to estimate the mean [15].

There are uncertainties in fitting the tails of heavy-tailed dis-
tributions [52, 53] such as the customer cost exceedance curve,
including whether it is decisively fit by the Pareto distribution
(2) and the manner and extent to which it can be reasonably
extrapolated beyond the maximum cost event observed. More-
over, further progress is needed in methods of estimating direct
and indirect customer costs, beyond our assumption of direct
customer costs as proportional to customer hours. Nevertheless,
the available evidence so far indicates that, at least for some
distribution systems, there is no workable mean cost of large
cost events. That is, quantifying the large event risk in ways
that use the mean large event cost is not viable. In particular,
the optimization of mean event cost and the calculation of
Conditional Value at Risk CVaR are not viable. Our new metrics
of large event risk are chosen to account for the heavy tails
and avoid these problems [15]. Further careful analysis of costs,
catastrophic events, and heavy tails is indicated.
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6 Quantifying Investment Benefits by
Rerunning History

Having established resilience risk metrics that capture the fre-
quency and severity of large-cost outage events without relying
on deficient mean-based estimates, we now explain in this
section how these metrics can be used to quantify the benefits
of different resilience investments. Specifically, we demonstrate
how a utility can use its own historical data to retrospectively
assess how resilience improvements, such as infrastructure
hardening or faster restoration, would have changed the large
event risk. This approach, which we refer to as the historical
rerun method, provides a practical and persuasive framework
for quantifying the value of investments, thereby supporting
better-informed future planning decisions.

In the historical rerun method, we first assess the historical
resilience performance of the system using the risk metrics
explained earlier. We do this by extracting events from the
outage data and calculating base-case metrics of the events. We
then consider what would have happened if an investment to
upgrade the system had beenmade several years ago. Howwould
that investment have improved the system’s performance over
these past years? Using this concept, we modify the outage data
to reflect the effects of such an investment (explained further
in Sections 6.1 and 6.2) and then recalculate the risk metrics
using the modified outage data. Comparing the results with and
without the effect of the investment quantifies the impact of
that investment. Suppose there are 𝑛event events and𝑚𝐵𝑖 and𝑚𝐴𝑖

are the values of a particular metric of the 𝑖th event before and
after incorporating the effects of an investment. Then the overall
benefits of the investment are calculated using that metric as:

Percentage Benef its =

(
1

𝑛event

𝑛event∑
𝑖=1

𝑚𝐴𝑖 −𝑚𝐵𝑖

𝑚𝐵𝑖

)
× 100 (8)

The historical rerun method is discussed in more detail in [13].

The historical rerun method is limited in that while it can
maintain or decrease the number of outages, it cannot synthesize
new outages. Nevertheless, it could still be used in cases where
the extremeweather events are expected to becomemore intense,
as long as the benefits of the proposed investments outweigh the
expected increase in the severity of the events. For instance, if the
average wind speeds in an area are projected to rise by 𝑥 mph
and an investment is proposed to harden the infrastructure in
that area to withstand 𝑦 mph higher wind speeds on average,
then as long as 𝑦 > 𝑥, the historical data and the rerun history
method can be used because there will be an overall reduction
in the number of outages rather than an increase. Moreover, an
expected future increase in the frequency of extreme events is
easily accommodated by increasing the average annual event rate
𝐸rate.

6.1 Modeling Benefits of Wind Hardening

We develop the area outage rate curve [13] using the outage data
and weather data. The area outage rate curve gives the empirical
average outage rate of an area of the distribution system as a
function of wind speed. The empirical area outage rates for the

FIGURE 4 Area outage rate curve of area A. Dots are the empirical
mean outage rate at each wind speed, and the curve is an exponential fit
of the empirical data.

utility data we analyze can be fit by an exponential function [13]
which is shown in Figure 4.

Wind hardening has the effect of shifting the area outage rate
curve in Figure 4 to the left, which means we would observe
lower outage rates at each wind speed as compared to the outage
rates before the wind hardening. Based on this understanding,
we shift the area outage rate curve to the left to represent a
wind-hardening investment which gives a 10% decrease in outage
rates. To capture the variation in results as different outages are
removed to decrease the outage rate, we take 2000 samples of
reduced outages randomly from the outage data according to
the reduced outage rates. We compute the risk metrics for each
sample, and then take the average over the 2000 samples to obtain
the average risk metrics resulting from the investment.

6.2 Modeling Benefits of Faster Restoration

While investments can be made for hardening the infrastructure,
investments can also be made to improve the restoration of
outages. We also model such investments using the historical
rerun technique [13]. If investments had been made to acquire
more repair crews, better stocks of spare parts, and better
route scheduling, then the restoration rates of the outage events
would have improved, resulting in the earlier completion of the
restorations. Let 𝑐faster < 1 be the factor by which the restoration
duration of outage events is reduced after the implementation of
an appropriate investment. Then the restore duration of the 𝑘th
restore (𝑟𝑘 − 𝑟1) in an event is reduced by a factor of 𝑐faster, as long
as the new restore time occurs after its corresponding outage. The
new restore time of the 𝑘th restore 𝑟new

𝑘
is then calculated by:

𝑟new
𝑘

= max{𝑟1 + (𝑟𝑘 − 𝑟1)𝑐faster, 𝑜𝜋(𝑘)}, 𝑘 = 1, . . . , 𝑛. (9)

Here, 𝑟1 is the time of the first restore, and 𝑜𝜋(𝑘) is the occur-
rence time of the outage that is restored in the 𝑘th restore. To
demonstrate the effects of faster restoration investments on the
risk metrics, we assume an investment that would have resulted
in a 10% faster restoration. We thus assume 𝑐faster = 0.9 and rerun
history by updating the restoration times of outages in the data

IET Generation, Transmission & Distribution, 2025 7 of 13
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FIGURE 5 Effect of 10% faster restoration on the customer cost
exceedance curve (Area B).

using (9). Faster restorations in events decrease the cost of events
and thus decrease the risk, as shown in Figure 5 for area B.

6.3 Discussion of Rerunning History

The historical rerun method has several advantages:

∙ It is driven by real historical data, which includes all the
factors that are very difficult to capture in models, such as
weather, human factors, emergency system reconfigurations,
equipment aging, and restoration practices.

∙ Model-based approaches can be used for predicting future
behaviors, but have considerable uncertainties, such as
uncertainties in parameters and modeling omissions and
approximations. Using historical data removes many of these
uncertainties.

∙ It is easy to communicate the benefits of the proposed
resilience investment to stakeholders, as those benefits would
have applied to the already lived experience of stakeholders,
particularly for large events.

∙ It is computationally inexpensive and easy to implement, and
the outage data is already available to utilities.

∙ In addition to distribution systems, it can easily be used in
transmission systems to quantify the benefits of investments
for both individual events and groups of events in a region
[54].

The main limitation of the historical rerun method relative
to detailed models relates to predicting the future. Detailed
infrastructure models have many assumptions, but can describe
with more detail and flexibility changes to the system and its
environment to predict the future. Whereas historical rerun has
more limited capabilities: it can only account for more frequent
wind events and, to a limited extent explained in Section 6, more
severe wind events.

The historical rerun requires some standard engineering practice
specifying the effectiveness and cost of proposed investments.
The 10% decrease in outage rates or the 10% faster restoration
considered in this paper can be achieved in different ways with

FIGURE 6 Comparison of tail slopes of customer cost exceedance
curve before and after 10% faster restoration (Area A).

different types of investments. Some of the investments can even
yield both a decrease in outage rates and faster restorations. Types
of investments available vary significantly from one utility to
the other and are influenced by factors like cost, geographical
location, dominant vulnerabilities, reliability and maintenance
policies, and regulations. Utilities have extensive expertise in this
engineering, which allows them to translate specific investments
into estimated improvements in outage rates and restoration
times. This paper shows how to take those estimates of percentage
improvements and calculate the resilience benefits of the specific
investments with metrics by rerunning history.

7 Results of Resilience Investments

The effects of wind hardening investments on risk metrics are
shown in Table 1. As a result of the 10% wind hardening
investment, the probability 𝑝large that an event has a customer
cost more than 1.8 × 105 USD is reduced by almost 2%. Since
the wind hardening decreases the number of outages, the annual
event rate 𝐸rate is also decreased by more than 6%. Consequently,
the expected annual frequency 𝑓large of large-cost events also
decreases by nearly 8%.

The effects of faster restoration are also shown in Table 1.
Investments made for improving the restoration rate of events
by 10% would have resulted in a significant 7% decrease in the
probability 𝑝large that an event has a large customer cost and
the same 7% decrease in the annual frequency of large-cost
events 𝑓large. In other words, there would have been 7% less
chance that an outage event costing customers 1.8 × 105 USD or
higher would occur if such an investment had been made. The
percentage reductions in 𝑝large and 𝑓large are the same because
faster restoration does not affect the number of events 𝑛event or the
annual rate of events 𝐸rate. As explained earlier, the exceedance
curve shifts downwardwhen 𝑝large decreases, and this can be seen
in Figure 6 comparing the slope of the exceedance curve before
and after 10% faster restoration. Although the downward shift is
more at the right end of the exceedance curve because the slope
magnitude 𝛼 has also increased by 3.68%.

One detail about the faster restoration modeling is that events
with only one outage are not affected by it as their restoration

8 of 13 IET Generation, Transmission & Distribution, 2025
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TABLE 1 The effects of historical rerun with 10% wind hardening and 10% faster restoration in Area A.

After 10% hardening After 10% faster restoration

Metric Base value Value Difference Value Difference

ALEC 0.315 0.319 1.04% 0.296 −6.16%
𝛼 0.793 0.789 −0.58% 0.823 3.68%
𝑝large 0.10 0.098 −1.90% 0.093 −7.01%
𝐸rate 622.8 583.7 −6.28% 622.8 0%
𝑓large 62.35 57.32 −8.07% 57.98 −7.01%
ALCRI 19.64 18.29 −6.90% 17.16 −12.62%

FIGURE 7 Percentage reduction in the cost of each event after 10%
Wind Hardening (Area A).

process, which starts and ends with the first restore, has zero
duration. There are 2142 such events in the utility data and their
costs remain the same after the faster restoration modeling.

We note in Table 1 that 10% wind hardening slightly increases
ALEC. This is because ALEC is the mean of the log of large cost
events, as given in (4). ALEC decreases when either the sum of
the log of large costs

∑
𝑐∈𝐶large

log
10
𝑐 decreases or the number of

large cost events 𝑛large increases. The overall effect of any type of
investment onALEC is determined by howmuch that investment
affects each of these two factors. In the case of wind hardening
investments, both the sum of large costs and the number of large
cost events decrease, but the decrease in the number of large
cost events (−8% on average), is more than the decrease in the
sum of their costs (−7% on average). Therefore, the value of
ALEC slightly increases. However, we see in Tables 1 and 3 that
10% hardening results in a significant decrease in the frequency
of large events 𝑓large because hardening reduces the number of
events overall. In the case of faster restoration investments, the
number of large cost events decreases less than the decrease in
the sum of large cost events (−7% vs. −13%), which results in an
overall decrease in ALEC, as shown in Table 1.

Both the hardening and faster restoration decrease the customer
cost of outage events as shown in Figures 7 and 8. However, they
do it in different ways: hardening decreases the cost by decreasing
the number of outages in events, whereas faster restoration
decreases the cost by decreasing the duration of outages in events.

FIGURE 8 Percentage reduction in the cost of each event after 10%
Faster Restoration (Area A).

TABLE 2 Parameters of Area A and Area B.

Parameter Area A Area B

𝑛event 3706 2944
𝑐large 0.586 0.495
𝑛large 371 295
ALEC 0.315 0.209
95% CI of ALEC (0.260, 0.371) (0.151, 0.268)
𝛼 0.793 0.844
95% CI of 𝛼 (0.715, 0.876) (0.750, 0.943)

Due to this, 10% hardening results in a relatively uniform 10%
decrease on average in the cost of all large-cost events (as shown
in Figure 7) as compared to 10% faster restorationwhich decreases
the cost of many (41%) of the large cost events by more than 10%,
as shown in Figure 8.

8 Results of Area B

Area B has 7876 outages that are grouped into 2944 outage events.
Table 2 compares different details of area A and area B, while
Table 3 contains the area B results of rerunning history with 10%
wind hardening and 10% faster restoration. The exceedance curve
of area B is shown in Figure 9. Goodness-of-fit test for Area B

IET Generation, Transmission & Distribution, 2025 9 of 13
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TABLE 3 The effects of historical rerun with 10% wind hardening and 10% faster restoration in Area B.

After 10% hardening After 10% faster restoration

Metric Base Value Value Difference Value Difference

ALEC 0.209 0.212 1.13% 0.202 −3.46%
𝛼 0.844 0.840 0.44% 0.856 1.43%
𝑝large 0.10 0.098 −2.08% 0.094 −5.76%
𝐸rate 495.1 461.5 −6.79% 495.1 0%
𝑓large 49.61 45.28 −8.73% 46.75 −5.76%
ALCRI 10.37 9.60 −7.42% 9.44 −8.92%

FIGURE 9 Customer cost exceedance curve of Area B, along with
fitted tail distribution, and large-cost threshold on a log–log scale.

data with 𝑐large as the cutoff gives p = 0.077 with 10,000 bootstrap
samples, and thus fails to reject the null hypothesis of Pareto fit
above 𝑐large at p = 0.05.

A comparison of the results of area A and area B (Table 1 vs
Table 3) shows similar trends in the improvements in the risk
metrics due to 10% wind hardening and 10% faster restoration.
Particularly, the percentage improvements due to 10% wind
hardening are approximately the same in both areas.

9 Conclusions

Fundamental to our resilience analysis of distribution system
utility data is grouping observed outages into events in which
outages accumulate before they are restored. Events of all sizes are
easily extracted from utility outage data [11]. It is straightforward
to evaluate the customer hours lost for each event. Then we
calculate a customer cost for each event that is proportional to
the customer hours and normalized by the number of customers
served by the utility.

We define risk by a customer cost exceedance curve [22]; that
is, the probability that the customer cost of an event exceeds a
given amount. We define large cost events as events with costs
exceeding a threshold value 𝑐large. Then 𝑝large is the probability
that an event has cost greater than 𝑐large as well as the value of the
exceedance curve at 𝑐large. We also obtain the annual frequency of

large-cost events 𝑓large by multiplying 𝑝large by the average annual
event rate 𝐸rate.

For the larger costs in our utility data, the exceedance curve is
approximately linear with slope magnitude 𝛼 on a log–log plot. It
follows that the exceedance curve above 𝑐large and hence the risk
of large events is described by its value 𝑝large together with the
slope magnitude 𝛼. Directly related to the slope magnitude 𝛼 is
the ALEC metric, which is simply the Average of the Logarithm
of the large Event Costs. We propose the probability of large cost
events 𝑝large or the annual frequency of large cost events 𝑓large
together with the slopemagnitude 𝛼 or ALEC as novel large event
risk metrics. Moreover, the annual frequency 𝑓large and ALEC
can be multiplied together to obtain the novel ALCRI Annual
Log Cost Resilience Index, which is simply the yearly sum of
the logarithms of the large event costs. This new formulation of
extreme event risk in distribution systems incorporates both the
probability and cost of extreme events and solves the statistical
problems of heavy-tailed data.

Our utility data shows customer cost exceedance curves with
heavy tails, showing that large cost events will occasionally
happen and have substantial risk. Further, the heaviness of
the tail (slope magnitude 𝛼 < 1) and the consequent expected
occurrence of catastrophic events with highly variable and large
costs strongly suggest that using average or mean values to
characterize these large costs in distribution systems is not
workable [15]. The costs of the large cost events are so variable that
there is no typical or representative large cost. These problems
are avoided by the new risk metrics 𝑝large or 𝑓large together with 𝛼
or ALEC. ALEC takes the logarithm of large costs before taking
the mean. Taking the logarithm transforms the heavy tail of the
exceedance curve into a light-tailed distribution with a mean that
can be practically calculated in the usual way.

While the customer cost distribution must be individually
checked in each proposed application, we are optimistic that
outage data from other distribution systems will show similar
very heavy tails in customer cost so that the methods and
conclusions of this paper can apply more broadly. For example,
reference [15] shows four other distribution systems in the USA
with very heavy tails in customer cost and provides further
justifications for the methods and metrics of this paper.

The main reason we develop risk-based metrics in this paper is
that risk-based decision-making is a sound and widely accepted
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approach for evaluating investments. Investments in resilience
should account for both the probability of extreme events and the
impact of the investment in reducing their impact. In particular,
we develop risk metrics to evaluate investments from a risk-to-
customer perspective, while ensuring that these risk metrics can
be practically calculated in the presence of heavy tails in the
cost data.

To summarize our advances in quantifying the risk of large
customer cost events:

∙ We describe resilience risk by processing utility outage data
into events, finding the customer cost of each event, and
forming the exceedance curve of these event costs.

∙ The tail of the exceedance curve describes the risk of large cost
events. In our data, the exceedance curve has a very heavy tail
that makes conventional metrics that depend on calculating
the mean unworkable.

∙ Practical metrics can describe the tail of the exceedance curve.
These new metrics are the probability 𝑝large that an event
has large cost or the annual frequency 𝑓large of large events
together with either the slope 𝛼 of the exceedance curve on a
log–log plot or, equivalently, theALECmetric. ALEC is simply
the average value of the logarithm of the costs of the large cost
events. The ALCRI metric describes both the frequency and
size of large cost events with the annual log cost of the large
cost events.

Having quantified the risk of large events from utility data, we
investigate how investments can mitigate this risk. We use the
historical rerun method to quantify the resilience improvement
that a proposed resilience investment would have had if the
investment had been made in the past.

Future work will include analyzing outage and cost data from
additional distribution systems, extending the analysis to utility
costs and risk, more specific case studies of hardening and faster
restoration, and quantifying other resilience investments such
as undergrounding.
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Endnotes
1CVaR is also known as expected shortfall, average value at risk (AVaR),
expected tail loss (ETL), and superquantile.

2The cost exceedance curve is also known as the survival function or
complementary cumulative distribution function (CCDF) or risk curve
of 𝐶.
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