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Abstract—The increasing frequency and intensity of extreme
weather events is significantly affecting the power grid, causing
large-scale outages and impacting power system resilience. Yet
limited work has been done on systematically modeling the
impacts of weather parameters to quantify resilience. This study
presents a framework using statistical and Bayesian learning
approaches to quantitatively model the relationship between
weather parameters and power system resilience metrics. By
leveraging real-world publicly available outage and weather data,
we identify key weather variables of wind speed, temperature,
and precipitation influencing a particular region’s resilience
metrics. A case study of Cook County, Illinois, and Miami-
Dade County, Florida, reveals that these weather parameters
are critical factors in resiliency analysis and risk assessment.
Additionally, we find that these weather variables have combined
effects when studied jointly compared to their effects in isolation.
This framework provides valuable insights for understanding
how weather events affect power distribution system perfor-
mance, supporting decision-makers in developing more effective
strategies for risk mitigation, resource allocation, and adaptation
to changing climatic conditions.

Index Terms—Power grid resilience quantification, weather-
grid impact model, statistical analysis, Bayesian learning.

I. INTRODUCTION

Climate change is expected to significantly increase both the
frequency and severity of extreme weather events [1]. These
events pose critical challenges to power grid infrastructure,
causing long-duration and widespread outages affecting grid
resilience. Weather events such as extreme winds, hurricanes,
and heat waves can significantly impact power system re-
siliency by extending outage duration and increasing economic
losses [2]. Given the rising frequency and intensity of extreme
weather events, the impact on grid resilience and the resulting
customer outages is becoming increasingly concerning. The
power system plays an essential role in our economy and
society as a critical infrastructure. A blackout, for instance,
can paralyze transportation systems, disrupt water treatment
facilities, and hinder emergency responses [3]. Thus, it is im-
perative to develop systematic approaches to quantify the rela-
tionship between weather events and power system resilience,
providing actionable insights for planning and preparedness to
minimize and mitigate the impacts of future such scenarios.

Resilience, in the context of power systems, refers to the
ability to withstand, adapt to, and recover from disruptions
while maintaining or quickly restoring essential operations [4].
There have been several approaches to quantify resilience us-
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ing existing weather data. In [5], an automated data framework
is used to analyze the resiliency of power systems against
extreme weather events, along with a spatiotemporal analysis.
In [6], machine learning models are proposed to predict outage
risk at the state level during and after extreme weather events.
In [7], probability density functions are used to describe
how resilience metrics are distributed across events. In [8],
Bayesian learning is used for predictive modeling of storm
outages on an electric distribution network. [9] uses a Bayesian
network to assess and enhance the resilience of Washing-
ton, D.C.’s interdependent electrical infrastructure, identifying
reliability, backup power, and resource restoration as key
contributing factors. In [10], distribution system resilience
is quantified with metrics from utility data. However, these
studies do not quantify the relationship between the attributes
of weather parameters (such as severity and intensity) and their
impacts on the power grid and grid resilience. In addition,
most of the existing literature investigates the effects of a
single weather variable on grid resilience. For example, [11]
relates the mean area outage rate to wind speed. This can
obscure the combined effects that different weather parameters
can have on the power system. Such models are imperative
to conduct predictive analysis to evaluate the impacts and
prepare for a future event. Understanding the correlation and
complex relationships are crucial, as it provides insights into
the dynamics of power system resilience, ultimately forming a
foundation for assessing the broader impacts of climate change
on grid performance and resiliency.

To address these gaps, this study proposes a framework
that integrates historical weather data and outage records
to identify patterns and vulnerabilities in power distribution
systems. These datasets are publicly available and thus easy
for researchers to navigate. By leveraging advanced statistical
models and learning techniques, the framework quantifies the
relationships between weather parameters and resilience met-
rics, enabling the development of predictive tools for weather-
induced outages. Once these relationships between individual
weather variables and resiliency are understood, we then
compare this to models that add additional weather variables.
Essentially, this reveals whether we can gain information when
adding more weather parameters than just the most dominant
seen in single regression. As a case study, we conduct this
weather-resiliency analysis on two counties - Cook County,
Illinois, and Miami-Dade County, Florida. These counties are
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selected because they are both urban populations, but with
vastly different weather profiles that could help to understand
the regional differences of extreme weather impacts on power
grid resilience. The proposed models have diverse applications,
including outage forecasting, resilience optimization, and re-
source allocation, and align with both immediate challenges
and long-term climate change adaptation strategies.

II. DATA DESCRIPTION

A. Power Outage Datasets

The EAGLE-I dataset [12] is an interactive GIS platform
developed by Oak Ridge National Laboratory (sponsored by
the U.S. Department of Energy). It automatically scrapes out-
age information from utility websites and records county-level
estimates of customers without power at 15-minute intervals.
A few important remarks about the EAGLE-I dataset are
worth noting. First, several rural counties exhibit intermittent
or missing data due to gaps in utility reporting, motivating
our focus on two major urban counties. Second, the 15-
minute update interval may result in short-duration outages
going unrecorded, introducing imprecision in outage duration
estimates. Finally, the dataset reports only the number of
customers affected, without identifying individuals, making it
difficult to determine whether repeated outage counts corre-
spond to the same or different customers. In this study, we
analyze outage data from 2018 through 2023 for two highly
urbanized counties: Cook County, Illinois, and Miami—Dade
County, Florida. These counties were chosen because the
underlying EAGLE-I dataset covers approximately 98% of
electric customers in both Illinois and Florida, ensuring near-
complete representation of outage events in these areas.

B. Weather Datasets

For weather information, we use the Iowa Environmental
Mesonet (IEM) Dataset [13]. The IEM maintains an archive
of automated airport weather observations from ASOS (Au-
tomated Surface Observing System) and AWOS (Automated
Weather Observing System) networks from around the world.
The IEM dataset comprises a comprehensive suite of meteoro-
logical variables such as wind speed, wind gust, precipitation,
air temperature, relative humidity, wind direction, and sea-
level pressure. In this study, we extract four key meteorological
parameters- wind speed, wind gust, precipitation occurrence,
and air temperature. These weather variables impact electric
power outages and we can characterize how system resiliency
metrics depend on them.

III. DATA PROCESSING AND EVENT EXTRACTION

The weather processing pipeline aggregates meteorologi-
cal observations from different weather stations across the
county, reporting at different intervals to a uniform 15-minute
timestamp grid. It retains the maximum value across stations
in each bin and imputes missing values via nearest-neighbor
interpolation. For the wind-gust data, any missing observation
is interpreted as the absence of a gust and is therefore filled
with the concurrent wind-speed measurement. This is done

to enhance the model and collect for each time interval the
maximum wind speed reported. The precipitation-occurrence
indicator is modeled as a binary variable. Intervals with miss-
ing or zero precipitation depth are assigned a value of zero (no
precipitation occurrence), whereas any positive precipitation
measurement is coded as one (precipitation occurrence).

The EAGLE-I outage dataset is first filtered by state and
then by county to achieve a spatial resolution suitable for
regional resilience analysis. To address missing data and
ensure temporal consistency, the dataset is processed using
forward fill, where missing values, limited to three consecutive
missing entries, are replaced with the last reported observation.
In addition, the outage records are resampled to uniform
15-minute intervals using a sample-and-hold approach. This
ensures that the time series data across all counties follows
a regular, consistent timestamp structure, which is critical
for aligning with external weather datasets and for resiliency
analysis.

The EAGLE-I records are then aggregated into pre-events
using a duration threshold, where consecutive records sepa-
rated by less than three hours are grouped together as a single
pre-event. This ensures that related outage occurrences are
grouped together. The pre-events are further filtered into sig-
nificant events using a magnitude threshold of 50 customers.
This step removes minor outages and filters out minor fluctu-
ations. This two-stage thresholding—based on both duration
and magnitude—effectively eliminates low-impact noise and
preserves groups of outages likely driven by weather events.
A significant event is bounded by the two consecutive times
where the number of affected customers passes the magnitude
threshold. The start time is the first time when the outage
magnitude exceeds the threshold following a low-outage pe-
riod, while the end time is the next time when the outage
magnitude falls below the threshold, signaling full restoration.
The performance curve is generated to calculate different re-
siliency metrics such as area under curve for all distinct events
as shown in Figure 2. For each significant event, we overlay
the full weather time series and compute the peak value of each
meteorological variable within that interval to quantify the
influence of key weather parameters on the resiliency metrics.

IV. RESILIENCY QUANTIFICATION

Resiliency metrics are used to quantify a power system’s
ability to withstand and recover from disruptive events. We
use the following resiliency metrics in this work:

o Area Under the Performance Curve (AUC): The Area
Under the Curve (AUC) serves as a metric for assessing
the total customer impact of an outage event. It is defined
as the area under the performance curve as well as the
total customer hours interrupted in the event [10]. A lower
AUC for a given event indicates higher resilience for a
given disruption [5].

o Customer Out: The total number of customers without
electricity during each event quantifies the event’s impact.
To enable comparisons across different counties, this
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Fig. 2. Performance Curve of a sample event

value is normalized by the total number of electricity con-
sumers in each county, taking into account the coverage
of the EAGLE-I dataset.

By correlating these resiliency metrics with weather condi-
tions, our analysis provides a comprehensive evaluation of the
resiliency of the power system. For each county, a correlation
matrix is generated to evaluate the relationships between
weather parameters and resiliency metrics. This matrix helps to
identify the dominant weather parameter that has the strongest
influence on resiliency metrics. The dominant weather pa-
rameters are then selected for learning a single regression
Bayesian model based on their significant correlation values.
Figure 3 shows the Pearson correlation matrices found from
the statistical analysis of the weather parameters compared
with resiliency metrics. Here it can be seen that for Cook
County, wind gust has a significant impact on resiliency
metrics. Conversely, Miami-Dade County has a dual impact
from both wind gust and extreme temperatures, with tem-
perature taking the higher correlation. Both relationships are
significantly stronger than that of Cook County, likely due to
the hurricanes affecting Florida.

Once the dominant weather parameter has been identified
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Fig. 3. Pearson correlation matrix between weather variables and resiliency
metrics for Cook County (left) and Miami-Dade County (right).

via the correlation analysis, each resiliency metric R; is mod-
eled as a function R; = f(W) of the individual weather pa-
rameters W using a Bayesian inferential framework. Bayesian
learning is employed in this analysis due to its probabilistic
framework, which systematically quantifies uncertainty [14].
Given the inherent stochasticity of outage and weather data,
Bayesian learning is an effective approach for modeling the
complex relationships between weather parameters and re-
silience metrics. In our analysis, the resiliency metrics are
assumed to follow an exponential relationship with the weather
parameter!, expressed as:

R, = ae®™ +¢ (D

where R; is the i-th resiliency metric, W is the weather param-
eter (e.g., temperature or wind), a, b, c are model parameters
learned via Bayesian inference, and e is Euler’s constant.
After fitting single regression models using the dominant
weather predictors, a comprehensive analysis requires evaluat-
ing the combined influence of multiple meteorological param-
eters. Consequently, we employ Bayesian multivariate regres-
sion to quantify the joint effects of several weather variables
on power grid resiliency. The relationship is formalized as:

R, = f(W1, Wy, W3) 2

where Wy, Wy, W3 are wind gust, temperature, and precip-
itation occurrence, and the weather variables significantly

! Average outage rate is an exponential function of wind speed in [11].



contributing to the resiliency metrics in the correlation
analysis of Figure 3. In multivariate regression modeling,
it is critical to determine whether the predictors should be
incorporated through additive or multiplicative structures.
This decision critically influences the model’s capacity to
capture complex interactions and nonlinear relationships that
may exist among the variables, particularly in the context of
resilience modeling influenced by extreme weather conditions.

As illustrated in Figure 4, the Bayesian modeling process
for multiple variables begins with exploratory data analysis,
including visualization and curve fitting that provides valu-
able insights into the functional relationships between the
predictors and the response variable. These insights inform the
model structure and prior distributions, guiding the selection
of additive, multiplicative, or interaction-based terms.
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Fig. 4. Bayesian Framework for Multi-Regression Analysis

Based on this prior understanding, multiple candidate mod-
els were formulated and parameterized to capture either addi-
tive or multiplicative relationships between predictors. These
models were compared against single-variable regression mod-
els developed for each respective county. The objective of
this comparison is to evaluate the extent to which incorpo-
rating additional weather-related predictors enhances model
informativeness, while simultaneously considering the trade-
off associated with increased model complexity. Each model
assumes a normal prior distribution for its parameters and
employs Markov Chain Monte Carlo (MCMC) sampling for
posterior estimation.

The likelihood function is constructed by quantifying the
probability of the observed data under each proposed model
structure. Through application of Bayes’ Theorem, the like-
lihood is integrated with the prior distributions to yield the
posterior distribution describing the updated parameter esti-
mates conditioned on the observed data.

Bayes factors are employed to compare competing models
by quantifying the relative evidence provided by the data
in favor of one model over another, while inherently penal-
izing excessive model complexity. This approach balances
goodness-of-fit with model simplicity, promoting models that
are both accurate and efficient. The model exhibiting the
highest Bayes factor is selected as the most plausible candidate

and subsequently validated using an 80-20 split of the dataset
for training and validation. To further assess its generalization
capability and predictive accuracy, the selected model is also
evaluated on an independent test set. From the Bayes factor
and predictive evaluation metrics shown in Table II and III,
we found that the multiplicative model for temperature and
wind gust data is more accurate than the additive model. The
multiplicative model is as follows:

R; = exp(Ina+bWi +bW3) + ¢ (3)

where R; is the i-th resiliency metric, W is air temperature,
Ws is wind gust, a,bq,bs,c are model parameters learned
via Bayesian inference, and exp is the exponential func-
tion. The model (3) is trained separately for precipitation
occurrence and no precipitation, thereby integrating wind
gust, air temperature, and precipitation into the prediction of
each resiliency metric. Incorporating multiple meteorological
predictors within a single regression framework enables com-
prehensive characterization of their individual and interactive
effects on power system resiliency within a given region.
By including main effects and interaction terms, the model
explains how wind gusts, air temperature, and precipitation
jointly influence the power system resiliency. Multivariate
regression analysis—especially when conducted in a Bayesian
framework—facilitates robust decision support for grid adap-
tation and risk management by quantifying parameter uncer-
tainty and yielding full posterior distributions for predictive
quantities. This probabilistic treatment is essential for con-
structing credible intervals around resilience forecasts and for
enabling optimal, risk-aware planning under uncertain weather
conditions and system responses.

V. RESULTS & ANALYSIS
A. Single Regression

For Cook County, the correlation matrix in Figure 3 reveals
that wind gust has the highest correlation with resiliency
metrics, indicating that it significantly influences the power
system’s ability to withstand and recover from disruptions.
As a result, we model the relationship between wind gust
and the resiliency metrics Area Under the Curve (AUC) and
normalised Customer Outages. For Miami-Dade County, we
found that wind gust and temperature are dominant weather
parameters, both strongly correlated with the AUC. The re-
sulting model captures the influence of these parameters on
the system’s performance, which is particularly relevant for
Miami-Dade county due to its hot and humid climate, where
extreme temperatures and hurricanes can stress the grid [15].

TABLE I
POSTERIOR SUMMARIES FOR MIAMI-DADE AND COOK COUNTIES

Parameter Miami-Dade Cook
Mean Std Mean Std
a 0.00411 0.0288 0.0167 0.1177
b 0.03943  0.00581 0.06808  0.00363
—5.1492 6.9940 —4.5666 7.0566
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Table I reports the Bayesian posterior means and uncertain-
ties for each model parameter in Miami—-Dade (temperature-
driven) versus Cook (gust-driven) fits. In Miami-Dade, the
intercept a is near zero, and the slope b ~ 0.039 (£0.0058)
indicates a moderate positive effect of temperature on the
response. In Cook, a larger slope b =~ 0.068 (£0.0036)
confirms that wind gusts have an even stronger and more
precisely estimated influence.

B. Multi-Regression Analysis

Next, additional variables are added to the models using
multiple regression. Using the Bayes Factor, we can under-
stand whether this gives us a stronger model than using
single regression. We quantify these results in Table II. For
Cook County, the Bayes factor BFgyst-only, gust+temp = 0.178
implies that the joint gust—-temperature model is approximately
1/0.178 ~ 5.6 times more probable than the gust-only
model, giving “substantial” evidence for combined model. For
Miami-Dade County, the Bayes factor BF emp-only, temp+gust =
4.8178 x 1013 indicates that the combined temperature—gust
model is much more likely than the temperature-only model,
thus providing “decisive” evidence for the joint predictors
model. Incorporating multiple weather variables enhances the
model prediction as well, as shown in Table III.

For the multiple regression-based approach, both counties
are modeled with the wind gust and air temperature variables,
as indicated by the results from Table II. We also filter these
by the precipitation binary variable to implicitly add it to
the model. We now investigate both models visually. The
visualization technique used here is contour plots. For both
counties, we plot a contour plot, shaded by the predicted
maximum customer outage (normalized by the total number
of customers in the county), with wind gust and temperature
on the x and y axes, respectively. These are plotted for
precipitation and no-precipitation cases.

Figure 7 shows the wind gust/temperature relationship in
Cook County with and without precipitation. Interestingly,
when there is no precipitation present, outages are char-
acterized more by extreme temperatures than wind gust.
Meanwhile, when there is precipitation, we see far more

outages from the dual effects of both wind gust and extreme
air temperatures. This illustrates the importance of modeling
multiple variables rather than single regression because it can
adequately capture the type of extreme events causing major
power outages. The correlation matrix only tells us which
variables have the highest relationship on outage metrics;
although in Cook county, wind gust has a dominant and clear
relationship on outages, these plots show how air temperature
and precipitation further exacerbate the effects of wind gusts.
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Fig. 7. Contour plot for Cook County with Air temperature and wind gust
as weather variables filtered by precipitation with customer outage (%) as
resiliency metrics. Black dots indicate the original data points used in model.

Now, we compare this to the contour mapping for Miami-
Dade county in Figure 8. Here, we see outages characterized
by very different types of extreme weather events. Without
precipitation, unlike in Cook County, we see outages most
commonly within the dual effect of both air temperature and
wind gust. Meanwhile, with precipitation, outages are mostly
just caused by wind gust, but with a less clear relationship.
This is likely due to hurricanes impacting the Miami-Dade
region regardless of temperature; in this case, precipitation
and wind gust combined model the outages from hurricanes.

VI. CONCLUSION

This analysis quantifies how weather parameters have a
significant relationship with resiliency metrics, as observed
in Miami-Dade County and Cook County. Bayesian analy-
sis was employed to model these relationships, providing a
probabilistic framework that captures uncertainty in model
parameters. We find from single regression analysis that in
Miami-Dade County, wind, temperature, and precipitation
have high correlation with outages, while in Cook County,
wind alone has a notable impact. However, when weather
variables are modeled together, they can capture hidden re-
lationships between weather and power systems resilience
that are invisible in single regression analysis, highlighting its
importance for risk assessment. These findings underscore the



TABLE II
MODEL COMPARISON OF SINGLE AND MULTIPLE REGRESSION USING BAYES FACTOR

Cook County

Model 1 Model 2 Bayes Factor, , | Interpretation

Gust only model Gust + Temperature | 0.178 Substantial evidence for Model 2
Miami-Dade County

Model 1 Model 2 Bayes Factor, , | Interpretation

Temperature only model | Temperature + Gust | 4.8178 x 10~ 13 | Strong evidence for Model 2

TABLE III
MODEL PERFORMANCE (RMSE AND MAE) ON VALIDATION AND TEST
SETS FOR MIAME AND COOK

Model Validation Test
RMSE MAE RMSE MAE
Miami
Temperature only 0.03701 0.037 0.0384  0.03812
Gust + Temperature 0.010 0.007 0.023 0.011
Cook
Gust only 0.00712  0.00655 | 0.00496  0.00438
Gust + Temperature | 0.00656  0.00598 | 0.00373  0.00302
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Fig. 8. Contour plot for Miami-Dade County with Air temperature and wind
gust as weather variables filtered by precipitation with customer outage (%)
as resiliency metrics. Black dots indicate the original data points used in the
model.

importance of weather parameters in influencing power system
resilience. Future work can include expanding the analysis
to cover various regions across the United States, including
rural regions that are often most impacted by power outages
caused by extreme weather. This framework is expected to
provide valuable insights for planners and system operators,
enabling them to better anticipate and prepare for weather-
induced disruptions by informing risk mitigation strategies,
resource allocation, and grid adaptation efforts.
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